
DEPARTMENT OF DISTRIBUTED AND DEPENDABLE SYSTEMS
http://d3s.mff.cuni.cz/

CHARLES UNIVERSITY IN PRAGUE
FACULTY OF MATHEMATICS AND PHYSICS

Martin Děcký, Vojtěch Horký

OS Security

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Computer Security

● Security in large
– Knowledge of potential threats

● Cost of information
● Information flow
● Cost of assets
● Cost of time and resources

– Security policies
● Human factor
● Guidelines
● Best practices

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Computer Security (2)

● Security implementation
– Security mechanisms

● Authentication
– Verification of identity (via credentials)

● Authorization
– Verification of access permissions

● Auditing
– Backward verification of actions

● Cryptography
– Information secrecy, information integrity

● Steganography
– Information hiding

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Golden Rules of Security

In the end of the day everything is reducible
to and relies on physical security.

Even the best security mechanisms cannot
win against flaws in security policies.

Security is not a product.

An attacker might not target the strongest
nor the most obvious part of the system.

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Basic OS Security Mechanisms

● Physical separation
– Important for backups, certification authorities, etc.

● Temporal separation
– Avoiding covert channels

● Logical separation
– Virtualization, kernel/user mode

– Memory management (segmentation, paging)

● Cryptographic separation
– Shared medium communication

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Steganography

● Embed data into a photograph, audio or video
● Demo

– Embed secret text into a photograph

– Difficult to recognize
● Whether steganography was used at all
● Difference between files minimal

– Extraction protected by password

– steghide

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Cryptography

● Cryptographic hashing
– with or without a secret key

– MD4, MD5

– SHA-1, SHA-256, …

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Hash demo

● MD5 is not enough
– What is 5f4dcc3b5aa765d61d8327deb882cf99?

– Search for it with Google

● Databases for other hashes exists too
– http://md5-database.org/sha256/

https://www.google.cz/search?q=5f4dcc3b5aa765d61d8327deb882cf99
http://md5-database.org/sha256/

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Cryptography (2)

● Substitution ciphers
– primitive, easy to attack with brute-force

– Ceasar

– Vigenère table (demo)

● One-time pads
● Transposition ciphers

– Enigma, Hagellin, …

https://www.youtube.com/watch?v=9ZU5WHvYTGM&t=11s

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Cryptography (3)

● Symmetric-key ciphers
– Feistel network

● iterated ciphering

– DES
● probably most widely spread
● short key, not considered safe

– IDEA
● considered safe

– Rijndael

– …

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Cryptography (4)

● Public/private-key ciphers
– based on trapdoor functions

– Merkle-Hellman
● knapsack problem, broken

– RSA
● factoring problem

– Elliptic curves
● discrete logarithm problem (algebraic groups)

– …

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Cryptography (5)

● Pseudo-random number generators
– prevent computation of the next number

– might be based on asymmetric ciphers

● Random number generators
– observe „truly“ random events

– combine more sources
● network traffic, I/O latency, system timer, …

– testing for randomness
● sequence 111111 or 01010101 is random, but...

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Cryptography (6)

● Random number sources in Linux
– /dev/random

● blocking
● „better“ randomness

– /dev/urandom
● non-blocking („u for unlimited randomness“)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authentication

● Verification of identity
– User, task, network service, etc.

– Credentials
● Name/password, passphrase, one-time password

– Plain text vs. hash
– Challenge/response
– Error hiding, exponential latency

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authentication (2)

● Verification of identity
– Credentials

● Tokens, certificates, smart tokens
– Issued by a 3rd party trustworthy authority

● Biometrics
– Fingerprint, retina, DNA, face, voice, keyboard typing profile

● Ownership of a private key (asymmetric cryptography)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authentication (3)

– Verification authority
● Usually central

– Credential database
– Implicit trust

● External
– Explicit trust

– Impersonation
● Successful authorization to perform an action can lead to

identity change
– SetUID mechanism

● Inherent issue of central/external authority with no or just
symmetric cryptography

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authentication (4)

– Pluggable Authentication Modules (PAM)
● API for verification of identity

– Originally implemented in Solaris, very common in Linux
– Dynamic configuration of authentication methods for different

programs
● Several groups

– Account management (users/groups creation, deletion, etc)
– Authentication management (authentication methods)
– Password management (updating stored credentials)
– Session management (custom actions after sucessful

authentication)
● Several categories of pluggable modules

– Requisite, required, sufficient, optional

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Configuring PAM – /etc/pam.d

– Each service has its own file (chpasswd, sudo, …)
● Chains (what to verify in which order)
● Facility

– authentication (establishing credentials)
– account management (is account available?)
– session management (session set-up and tear-down)
– password management (change authentication token)

● Control flags (required vs. sufficient)
● Module name (and arguments)

auth sufficient pam_rootok.so
auth required pam_unix.so
account required pam_unix.so
session required pam_unix.so
password required pam_unix.so sha512 shadow

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

PAM usage
#include <security/pam_appl.h>
#include <security/pam_misc.h>

static struct pam_conv conv = { misc_conv, NULL };

int main(int argc, char *argv[])
{
 pam_handle_t *pamh = NULL;
 char *user;
 int retval;

 // ...

 retval = pam_start ("check_user", user, &conv, &pamh);
 if (retval == PAM_SUCCESS)
 retval = pam_authenticate (pamh, 0); // Is user really himself?
 if (retval == PAM_SUCCESS)
 retval = pam_acct_mgmt (pamh, 0); // Is user account valid?
 if (retval == PAM_SUCCESS)

 // ...

 pam_end (pamh, retval);
}

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authentication (5)

– Kerberos
● External (central) authority

– Used for various distributed systems (AFS, Windows Domain)
– Based on symmetric cryptography

(authority knows keys of all communication partners)
● Based on Needham-Schroeder protocol
● Mutual trust
● Both the client and the server identity is verified
● Safe against replay attacks and snooping

– Authority issues tickets which can prove identity
● Transfer encrypted by a session key
● To minimise the problem of stealing unencrypted tickets,

each ticket has a limited lifetime (synchronization of clocks)
– Authority can impersonate any user

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Security models

● Military security
– access rights

– classification (top secret, secret, confidential, …)

– compartment

● Lattice
– generalization of the MSM

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Security models (2)

● Bell-LaPadula
– information transfer

– simple security property
● no read-up

– *-property
● no write down

● Biba
– data integrity

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Security models (3)

● Chinese wall
– dynamic model

– “adviser cannot leak information between
competing companies“

● …

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization

● Verification of access permissions
– Whether given subject (user, process, etc.) has the

permission to perform given action on a given
object

● Subject identity has to be already established
(authentication, explicit anonymous identity)

– Mandatory Access Control (MAC) model
● Subjects S
● Objects O
● Actions A

Subjects

Alice Bob Cecile

Objects

file_a read - write

file_b read read, write -

file_c read - -

Access Control
Matrix

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (2)

– Usual MAC properties
● Access control check is performed according to security

policy on every action
● Security policy is enforced by a central authority (kernel,

server) and controlled by security policy administrator
– Subjects (except the administrator) cannot change the policy

● Discretionary Access Control (DAC) model
● Subjects have a possibility to alter the security policy

● Usually the security policy actions are controlled by
a MAC policy

● Most systems use both MAC and DAC for various objects

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (3)

– Access Control Lists
● Maps objects to a list of [subject, list of actions]

– Unix file access rights
● Each file/directory (object) is associated with a list

[owner, r/w/x]
[group user 0, r/w/x]
[group user 1, r/w/x]
...
[other user 0, r/w/x]
[other user 1, r/w/x]
...

– POSIX ACLs
● Extension of the previous fixed scheme to an unlimited

number of users and groups

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (4)

– Access Control Lists
● Static assignment

– Subjects are users/groups, not processes
● Usually special users/groups for specific processes
● Other mechanisms besides ACLs

● Scalability
– Every object has to store all allowed actions

● Action groups
● Hierarchy inheritance (NetWare ACLs, Windows ACLs)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (5)

– Capabilities
● Maps subjects to a list of [object, list of actions]
● Quite common in distributed systems

(Amoeba, Mach, EROS)
– Capabilities cannot be directly accessible to subjects

(easy to falsificate)
● Indirect reference into protected storage (Mach)
● Encryption (Amoeba)

● Advantage over ACLs: dynamicity
– Individual processes can be selectively limited
– Confused attorney problem

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (6)

● POSIX Capabilities
– Each process has three sets (bitmaps in Linux)

● Effective set
● On each action a check is performed

● Permitted set
● Capabilities which can be turned on in the Effective set

● Inheritance set
● Capabilities which are inherited during exec() call

– Sets stored in filesystem (associated with executable files)
● SetUID mechanism copies a Forced set (File Permitted set)

into Permitted set
– Capabilities for users

● Can be set by the login process
● pfexec in Solaris (role-based capabilities setup)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (7)

● Some of POSIX Capabilities in Linux
– CAP_CHOWN (change file owner and group)
– CAP_DAC_OVERRIDE (bypass file permission checks)
– CAP_IPC_LOCK (permit memory locking)
– CAP_KILL (bypass permission checks for sending signals)
– CAP_LINUX_IMMUTABLE (allow setting immutable file

attributes)
– CAP_MKNOD (allow creation of device special files)
– CAP_NET_ADMIN (allow network devices management)
– CAP_NET_BIND_SERVICE (allow binding reserved IP ports)
– CAP_SETPCAP (allow granting and revoking other process'

capabilities)
– CAP_SETUID (allow process UID manipulation)
– CAP_SYS_ADMIN (permit syscalls such as mount(),
swapon())

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (8)

● Some of POSIX Capabilities in Linux
– CAP_SYS_BOOT (allow reboot(), kexec_load() syscalls)
– CAP_SYS_CHROOT (allow chrooting)
– CAP_SYS_NICE (allow raising priority level)
– CAP_SYS_PTRACE (allow tracing of other processes)
– CAP_SYS_TIME (allow system clock manipulation)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (9)

– Role-Based Access Control (RBAC) models
● Maps roles to a list of [object, list of actions]

– Each subject is mapped to a list of roles
– Roles are vertices in an oriented graph (partially ordered set)

● Role hierarchy
● Can simulate both MAC and DAC
● Can be simulated by MAC if the role graph is a tree
● Many different models and implementations

– Extensions for Separation of Duties
– Associating roles with global list of actions (capabilities)
– Extensions for context-sensitive access control

● Organization-Based Access Control (OrBAC)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Authorization (10)

– Context-Based Access Control (CBAC) models
● All previous models use fixed mappings, lists and sets
● CBAC is dynamic according to the current context

– Stateful firewalls
● The permission check is not based only on subjects, objects

and actions, but also on the networking context
● State of the networking (established connections)
● State history (previous packets, connections, etc.)
● Data (packet content, application layer state, etc.)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Auditing

● “The independent examination of records and
other information in order to form an opinion on
the integrity of a system of controls and
recommend control improvements to limit risks”
– Includes examination of

● system logs
● backup strategies
● instructions to handle security breaches

– …

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Auditing (2)

● Keeping track of configuration changes
– Procedures for making the change and recording

the change

– Versioning the configuration
● etckeeper, Puppet, …

– Monitoring for unexpected changes
● Tripwire, AIDE, …

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Auditing (3)

● Checking logs for „odd things“
– Manually or specialized tools

– „All system (kernel)“ log
● Event Viewer, dmesg

– Unauthorized access
● /var/log/auth.log, /var/log/secure

– Logs of individual services
● /var/log/yum.log
● /var/log/httpd/access_log

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Security Certification

● Various classification criteria
– Trusted Computer System Evaluation Criteria

● TCSEC/Orange Book
– Not used since 2000
– Still considered as important and relatively simple example

● Classification Levels
– D no security mechanisms
– C1 advisory security mechanisms

● Separation of subjects and objects
● Subjects are allowed (but not required) to use the

mechanisms

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Security Certification (2)

– C2 controlled access
● Logging of all actions
● Protection of residual information
● OS/400, AS/400 (IBM), OpenVMS VAX 6 (DEC), Windows

NT 4.0 (Microsoft)
– B1 tagged access control

● Each object has a security class (level)
● Each subject has a security clearance (level)
● Each action is evaluated according to Bell-La Padula security

model
● The implemented security model has a formal description
● The implementation has been tested
● SEVMS VAX 6, ULTRIX MLS+ (DEC), HP-UX BLS 9 (HP),

Trusted IRIX/B (SGI), OS1100/2200 (Unisys)

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Security Certification (3)

– B2 structured access control
● Verifiable global design
● Well-defined subsystems
● Least sufficient permissions principle
● Security mechanisms enforced also against the hardware

● Kernel runs in an isolated security domain and
periodically checks its integrity

● Analysis of possible covert channels
● Trusted XENIX 4.0 (Trusted Information Systems), Multics

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Security Certification (4)

– B3 security domains
● Each subsystem runs in a separate security domain
● Extensive testing of each access check and action
● Complete formal description of the design

● Design based on simple principles
● Hardened against possible attack vectors
● Detection of possible threats by audit log examination
● XTS-300 (Wang Federal)

● Binary compatibility with Unix System V on x86, but
requires special hardware

– A1 formally verified design
● Formal proofs of security mechanisms consistence
● Formal verification of conformance between design and

implementation
● Formal analysis of covert channels
● Two routers from Boeing and Gemini Computers

Martin Děcký, Vojtěch Horký 19th December 2014, Operating Systems

Instead of conclusion

In the end, it always comes down to money.
– 100% secure system is a delusion

– cost of a security violation vs. cost of hardening
the system

The best policies are useless if users are
careless.

	Title slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

