Operating Systems
Labs Environment

http://d3s.mff.cuni.cz/osy

CHARLES UNIVERSITY

Faculty of Mathematies
and Physics

Department of
Distributed and

Vojtech Horky

horky@d3s.mff.cuni.cz

Dependable

P Systems

Platform Used In the Labs

® MIPS 32b on R4000 CPU

® Cross-compiler toolchain for MIPS
® GCC, binutils
® MIPS R4000 simulator
® MSIM
® Kalisto
® Educational kernel for MSIM/MIPS R400
® uniform.ms.mff.cuni.cz

® Linux machine with prepared environment (toolchain, MSIM, ...)
® You should have received e-mail with account information

B Used for in-labs submission

Operating Systems Labs Environment

uniform.ms.mff.cuni.cz

e Fedora server with environment for the labs
e Check login there NOW (use PuTTY)

Category:

- Session
i i-Logging
- Teminal
- Keyboard
- Bell
Features
indow
- Appearance
- Behaviour
- Translation
Selection
i i Colours
- Connection

Basic options for your PuTTY session

Specify the destination you want to connect to

!

oSttt
Gln'rfnrrn.ms.mﬁ cuni.cz

Load, save or delete a stored session

Saved Sessions

Default Settings

Close window or exit:

Always

() Never

The server's host key is not cached in the registry. You
IE % have no guarantee that the server is the computer you
think it is,
The server's ssh-ed25319 key fingerprint is:
ssh-ed25519 236 d4:

PuTTY¥'s cache and carry on connecting.

If you want to carry on connecting just once, without
adding the key to the cache, hit Mo.

If you do not trust this host, hit Cancel to abanden the
connection.

Operati Labs Environment

MIPS R4000
Platform

MIPS R4000: 64bit RISC processor

® Basic features

M Load/store instruction set model
M 32-bit and 64-bit operation, little and big endian
B Fixed instruction length (32 bits)
® Orthogonal instruction set, explicit stack management
® Simple pipeline processing
@ System Control Coprocessor (CPO)
® Registers

W 32 general-purpose registers (32/64 bits wide)
® Almost orthogonal, usage defined by ABI
M Special registers

® Memory management

® Virtual address space divided into hard-wired segments

® TLB-only paging (TLB managed by OS)

Operating Systems Labs Environment

MIPS System V ABI (032)

@ Application Binary Interface
m Set of conventions defining machine code interoperability

@ Hardware, compilers, assemblers, linkers, libraries, operating systems, etc.

® MIPS hardware & System V ABI register designation

m RO is hard-wired to zero

m R31is a link register

m R26 (KO), R27 (K1) reserved for kernel use

m R28 (GP) global pointer

m R29 (SP) stack pointer (stack grows towards lower addresses)
m R30 (FP) frame pointer

m R4 (AO), R5 (A1), R6 (A2), R7 (A3) first 4 integer function arguments

@ Additional arguments on the stack, but the stack space is always reserved
m R2 (V0), R3 (V3) integer function return values

® Special registers

m PCis program counter
m LO, HI store the results of multiplication and division

Operating Systems Labs Environment

MIPS R4000 Memory Management

® Virtual address space

m Hard-wired segments (top 3 bits)

® Translation Lookaside Buffer (TLB) _
m Software-managed
: Variable b privleged, LB mapped
m Variable page size (from 4 KiB up to 16 MiB)

4 GiB Virtual address space Physical address space
3 GiB
2 GiB
512 MiB
0

Operat'l ng Systems Labs Environment

Cross-compiler
Toolchain

Cross-compiler Toolchain for MIPS

e Cross-compiler

= Generates code for a different platform than it runs
on

e Components
= GNU GCC

e The actual C language compiler
= GNU binutils
e Assembler, linker and other supplementary utilities

= GNU GDB
e Debugger

Operating Systems Labs Environment

Compiler Toolchain
gcc -c -o output.o input.c
e as -o output.o input.s

@ preprocessor—»@—» compiler —>‘—> assembler

gcc -c -o output.o input.S

preprocessor —>‘—>

assembler

Operating Systems Labs Environment

Object Linking

ld -T link.ld -o output.bin input@.o inputl.o

linker —>‘

Operating Systems Labs Environment

Linker Script

OUTPUT_FORMAT (binary)

OUTPUT_ARCH(mips)

SECTIONS {

.kernel 0x80000000 : {

*(.text)
*(.data)
(.rodata .rgfdata.)

*(.bss)

U UIN

_kernel_end = .;

J

/DISCARD/ : {

Operating Systems

*(another _section)

Symbol accessible from C code
but placement (after all the code)
specified in the linker script.

input@.o output.bin
xex? bal fnco1 kernel:

ghiotetall_jiie global _fnc01

global_fnc02 \ global fnc02

global_int

.bss: global_ptr

global_int _kernel_end

global_ptr

displacement:

another_section: 0x80000000
another_symbol

DISCARD/

Labs Environment

MSIM Emulator

Operating Systems Labs Environment

MSIM 1.3.5 — MIPS R4000 Simulator

e Simplified (but faithful) model of MIPS R4000 CPU

= Only 32 bit operation
= No FPU, no CPU cache emulation

e Peripheral hardware

= Extremely simplified, does not follow any actual
hardware

= RAM and ROM memory, keyboard, console, timer, disk
e Basic command-line debugging features

e http://d3s.mff.cuni.cz/~holub/sw/msim/

http://d3s.mff.cuni.cz/~holub/sw/msim/

MSIM Basic Usage

¢ Invocation
msim [-c <config file>] [-i] [-t]
e Basic configuration/prompt commands
= add add device/memory
= dd dump configured devices

= mbd dump memory regions

s set setinternal control variables
e iaddr, iopc, icmt, iregch, ireg, trace

Operating Systems Labs Environment

MSIM Basic Usage (2)

@ Basic configuration/prompt commands (2)

m step [n] execute ninstructions

m continue execute until stopped

= md memory dump (physical address)

m id instruction dump (physical address)
m stats dump run-time statistics

m echo echo a string

m help

m quit

@ Non-standard debugging instructions
m DTRC, DTRO, DINT, DRV, DHLT, DVAL

Operating Systems Labs Environment

Sample MSIM Configuration

add dcpu cpu@

add rwm main ©

main generic 16M

add rom bios Ox1fc00000

bios generic 32k

bios load “bios.img*

add dprinter output 0x10000000

add dkeyboard input 0x10000008 3

cpu@ info stat tlbd md 1d
output redir “dump.log*

Operating Systems Labs Environment

Kalisto

Operating Syst Labs Environment

Kalisto

e Simple educational operating system for MIPS
R4000

= All necessary functionality but no optimizations or
advanced features

e Base implementation for all assignments

= Some parts are distributed as precompiled object
files .0 to obscure implementation

e Mostly in C, several assembler files for low-level
routines (context switch, bootloader, atomics, ...)

Operating Systems Labs Environment

Compiling and running Kalisto

——————————CWCNy—
e Default configuration (3 printing threads)

= make (compilation & linking)
= msim (configuration from msim. conf)

This is Kalisto ©0.9.11,

built by horky at 14: 23 14 Oct 1 2018.
cpu@: Address translation ... OK

cpu@: Frame allocator ... OK

cpu@: Heap allocator ... OK

cpu@: Threading ... OK
cpu@: Scheduler ... OK
cpu@: Timers ... OK
cpud: Disk ... OK
[Thread 0] -------- ... FaRdkdkk [Thread 2] Hokokodokokokoksdokoksksk

Creating user space process ...
User space: Hello world!

Cycles: 956433

Operating Systems Labs Environment

Compiling and running Kalisto (2)

e — N Jus
e Running Kalisto self-tests

= Both kernel and userspace
e Usually ends with Test passed..
= Do not forget to make clean first

e Needed for recompilation with different test
e For incremental building make is sufficient

= make KERNEL TEST=tests/basic/timerl/test.c
= make USER_TEST=tests/thread/uspacel/test.c
= Notice how the path is specified

e Running test suites
s ./tests-malloc.sh (depending on lab topic)

Operating Systems Labs Environment

Kalisto Source Code

@ kernel/ —Kalisto kernel: scheduling, memory management, drivers etc.

m include/ —shared headers
W adt/ — data structure (list, bitmap, RB-tree)
m boot/ — bootloader
m drivers/ —screen, keyboard, disk, CPU enumeration
W exc/ — exception and interrupt handling
m 1ib/ — basic functions (printk, memcpy ...)
m mm/ — frame allocator, virtual memory management (paging, TLB)
W proc/ —threads and processes
m sched/ —scheduler
m synch/ —semaphore, mutex, conditional variable
m time/ —kernel timers
m tests/ —kernel tests
@ user/ —Kalisto userspace: libc etc.
m 1ibrt/ — basic userspace C library
m tests/ — userspace tests
@ contrib/toolchain.mips.sh — cross-compilation toolchain setup

Operating Systems Labs Environment

Kalisto Memory Layout

Physical memory
OXFFFFFFFF

e Kernel

= kernel.bin

= Loaded into RAM starting at 0x80000000
physical address 0

e Loader (firmware)

Ox1FC00000

0x00000000

s loader.bin

= Loaded into ROM at physical OXFFFFFFFF
address Ox1FC0O0000

= Jumps to kernel entry point

Virtual memory

0x80000000

Ox1FC00000

0x00000000

Operating Systems Labs Environment

Kernel Initialization

e kernel/main.c

m bsp start()
e Global kernel initialization (on the bootstrap CPU)

mthl init() setup of the TLB

m frame_init() frame allocator setup (physical memory size detection)
m heap_init() kernel heap allocator setup

m threads _init() thread support setup

m scheduler_init() scheduler setup (run queue setup)

m timers_init() timers setup

m disk _init() disk driver setup

m Creation of the idle thread
m Creation of the main kernel thread (with example() as the thread body)
m Activation of the next CPU (atomic variable)
m Context switch to the main kernel thread
— The kernel starts scheduling threads

m ap_start()
e Local kernel initialization (on application CPUs)

Operating Systems Labs Environment

Useful Functions

e printk()
m Simplified kernel implementation of printf
® Only basic modifiers are implemented (%d, %p, %s, ...)

e dprintk()

m Debugging version, prints calling function and source line
@ assert()
emsim_stop()

m Enter interactive mode of the simulator
emsim_reg _dump()

m Dump CPU registers
emsim_trace_on()

m Trace executed instructions
emsim_trace off()

m Stop tracing executed instructions

Operating Systems Labs Environment

Using Lists
s © 5 © 5 © s
#include <adt/list.h>

/* Structures that are in a list. */
struct my_ struct {

link t link;

int value;

}

/* List declaration and initialization. */
static list t my list;
list init (&my list);

/* Adding to a list. */

struct my struct *x = malloc(sizeof(struct my struct));
link_init (&x->link);

x->value = 42;

list append (&my list, &x->1ink);

/* Iterate through items, it points to my struct */
list foreach (my _list, struct my struct, link, it) {
printk("Value is %d\n", it->value);

Operating Systems Labs Environment

Using Unix

Environment,

C language,
etc.

Using Unix, Knowing C, etc.

e User knowledge of Unix at the level of NSWI095
(Introduction to UNIX) is sufficient

e C knowledge at the level of NPRG041
(Programming in C++) should be sufficient

= Just mind some differences between C++ and C

e No STL, no classes and namespaces, no RTTI and exceptions,
no streams and overloading

e If you think otherwise

m There are extra slides available on the web with short
recap

= Or contact us for advice (the sooner the better)

Labs Environment

Power-on
Self-test

Verify You Understand the Basics

e Complete the following pseudo-test before
coming to next labs.

https://docs.google.com/forms/d/e/
1FAlIpQLSeMJpkExgkrg4LGH3sUj-Ks9n5E4-

ETZZsCOSOAT
e |t is not mandatory

-k1nH2Dw/viewform

out unless you are well

versed with kernel ¢

evelopment, it is highly

recommended to do it.

Operating Systems

Q&A

Operating Systems Labs Environment

	Title Slide
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31

