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Running the Terminal
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Running the Terminal

Where to find it

• GUI menu: System or Utilities or Accessories

• Application name: Terminal or RXVT or Console

Some other tips

• Ensure you use readable font (face and size) – you will be using it a lot

• Use tabs and multiple windows

• export TERM=xterm when keyboard/output behaves in a funny way



cbna

Remote Login etc.
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Logging to a Remote Machine via SSH
ssh remotelogin@remote.machine.hostname

First login
The authenticity of host 'u-pl15 (195.113.21.145)' can't be

established.

ECDSA key fingerprint is

SHA256:U6u6eLekctQDr9uy4CKZJeDFjcCWqCI/v9owL1NODcE.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'u-pl15,195.113.21.145' (ECDSA) to the

list of known hosts.
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Configuring SSH Login
Put the following into ~/.ssh/config

Host osy

User USERNAME

PreferredAuthentications publickey,password

HostName uniform.ms.mff.cuni.cz

and you can login simply by typing ssh osy
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Password-less login
SSH supports public/private key login.
You need to generate public/private key pair first.

Do I have one?
ls ~/.ssh look for id_rsa and id_rsa.pub or similar pair.

Generating a new one
ssh-keygen -t RSA

Pass-phrase improves security of the key but also slows-down its usage
(unless you use SSH agent).
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Password-less login (cont.)

Setting up the password-less login to uniform

1 Get your public key (cat ~/.ssh/id_rsa.pub)

2 Login to uniform.ms.mff.cuni.cz normally

3 Copy the public key to the end of ~/.ssh/authorized_keys file
echo 'public-key-here' >> ~/.ssh/authorized_keys

4 Test password-less login

Issues

• Check that ~/.ssh has rwx------ permissions

• Check that authorized_keys has at most rw-r--r--

• Check that you copied the public key correctly (single line etc.)
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Password-less login on Windows

1 Install PuTTY (http://www.putty.org/)
2 Run PuTTY Key Generator

• RSA key
• Save public and private key pair

3 PuTTY configuration
• Session – Host Name: LOGIN@uniform.ms.mff.cuni.cz
• Copy public key to authorized_keys (right click inserts)
• Connection – SSH – Auth – Private key file
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Using the Filesystem
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The Basics

• cd

• ls, ls -l

• find

• chmod
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Midnight Commander
Remember at least the mc command :-)
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Downloading, Unpacking, …
For downloading, use wget.

To unpack, use tar with proper switches.

• x to extract

• f to work with file (must use)

• j to work with .bz2

• z to work with .gz

tar xjf kalisto-0.9.11.tar.bz2
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Accessing Remote Files via SSH FS

• mkdir remote-fs

• sshfs osy:kalisto-0.9.11/ remote-fs/

• Work with files on uniform locally in remote-fs directory

• But compile remotely!

• Do not forget to unmout: fusermount -u remote-fs
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Inspecting Text Files

• cat FILENAME to dump contents to terminal
• less FILENAME to scroll through file (or pipe)

• Use / to search
• Use q to quit

• grep to search for a pattern
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Using Make Build System
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Running Make
If there is Makefile in the current directory, just type make.

Common targets

• make clean Remove all generated files.

• make doc Generate documentation.

• make FILENAME Regenerate particular file.

• make -B … Force rebuild.
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Anatomy of a Makefile

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

gcc main.o -o program

main.o: main.c

gcc -g -Wall -c -o main.o main.c
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Anatomy of a Makefile II

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

gcc main.o -o $@

%.o: %.c

gcc -g -Wall -c -o $@ $<
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Anatomy of a Makefile II12

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

gcc main.o -o $@

%.o: %.c

gcc -g -Wall -c -o $@ $<
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Anatomy of a Makefile III

CC = gcc

CFLAGS = -g -Wall

LD = gcc

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

$(LD) main.o -o $@

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<
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Anatomy of a Makefile IV

CC = gcc

CFLAGS = -g -Wall

LD = gcc

SOURCES = main.c

OBJECTS := $(addsuffix .o,$(basename $(SOURCES)))

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: $(OBJECTS)

$(LD) $(OBJECTS) -o $@

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<
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Anatomy of a Makefile V

CC = gcc

CFLAGS = -g -Wall

LD = gcc

SOURCES = main.c

OBJECTS := $(addsuffix .o,$(basename $(SOURCES)))

DEPEND = Makefile.depend

...

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

-include $(DEPEND)

$(DEPEND):

-makedepend -f - -- $(CCFLAGS) -- $(SOURCES) > $@ 2> /dev/null

-[ -f $(DEPEND).prev ] && diff -q $(DEPEND).prev $@ \

&& mv -f $(DEPEND).prev $@
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From C++ to C
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Things You Cannot Use

• Classes and namespaces

• STL and templates in general

• Function overloading

• Exceptions, RTTI and type casting

• new, static initialization

• Streams

There are ways to bypass these limitations. Not all of them are nice.

Actually, it is possible to write OS kernel in C++ and use namespaces,
exceptions etc. But the OS has to provide run-time support for these
constructs. Kalisto provides no such support at the moment.
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Missing Classes and Namespaces

• object.function(…) is actually classname_function(object, …)

• Prefix identifiers with namespace name
• pthreads are a pretty good example
• Rest of POSIX is definitely not
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Missing STL and Templates

• Templates can be (lamely) emulated with X macros
• Generic data structures are possible

• Simplified linked list in Kalisto
• Full-fledged generic RB-tree, B+ trees or hash tables in HelenOS
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Using list_t

#include <adt/list.h>

/* Structures that are in a list. */

struct my_struct { link_t link; ... }

/* List declaration and initialization. */

static list_t my_list;

list_init (&my_list);

/* Adding to a list. */

struct my_struct *x = malloc(sizeof(struct my_struct));

link_init (&x->link);

list_append (&my_list, &x->link);

/* Iterate through items, it points to my_struct */

list_foreach (my_list, struct my_struct, link, it) { ... }
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No Function Overloading

• _Generic macro in C11

• Wrapper functions with different names
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Error Handling

• Function always returns an error code
• EOK or 0 on success
• Other values passed through parameters

• Error is signalled by negative response, valid handle is always positive
• open() could have had behaved in this way too

• Error is signalled via errno

Always check for errors. Especially in OS code!
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Only malloc is available

• Check for errors

• Use sizeof

• Initialize afterwards
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Static Initialization

• Unavailable directly

• Compiler extensions (__attribute__((constructor)))

• For OS, better to call them directly (ensures proper ordering)
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Type Casting
No run-time support, static cast only.
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Streams and I/O

• No << and >> operators for I/O

• printf for formatted output

• FILE * and fopen, fread/fwrite and fclose

int i = 42;

const char *s = "Hello";

size_t x = sizeof(i);

printf("i = %d [%zuB], s = \"%s\"\n", i, x, s);

// i = 42 [4B], s = "Hello"
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Beware of Undefined Behaviour
int i = INT_MAX + 1

• We might expect it wraps around to INT_MIN

• That is what the CPU instruction probably does
• But C standard says this is undefined so

• it may work as we expect
• or the whole program can do anything

Practical use? Optimizations …
For example, knowing that i++ on int i = 0 may never overflow (because
it is undefined) compiler it can safely assume that i > 0.
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Other Bits

no previous prototype for function with no arguments
Function with no arguments has to be declared as (notice void parameters):
void driver_init(void)

Idiom for multi-command macro
#define SHORTCUT(x,y) do { cmd1(x); cmd2(y) } while (0)

Debugging macro
#define dprintf(fmt, ...) \

printf("[DEBUG %s:%d %s()] " fmt, \

__FILE__, __LINE__, __FUNCTION__, \

#__VA_ARGS__)
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Questions? Comments?


