
cbna

Operating Systems
SSH, make, C and other bits needed for NSWI004

Vojtěch Horký

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University in Prague
Czech Republic

October 13, 2017

cbna

Running the Terminal

cbna

Running the Terminal

Where to find it

• GUI menu: System or Utilities or Accessories

• Application name: Terminal or RXVT or Console

Some other tips

• Ensure you use readable font (face and size) – you will be using it a lot

• Use tabs and multiple windows

• export TERM=xterm when keyboard/output behaves in a funny way

cbna

Remote Login etc.

cbna

Logging to a Remote Machine via SSH
ssh remotelogin@remote.machine.hostname

First login
The authenticity of host 'u-pl15 (195.113.21.145)' can't be

established.

ECDSA key fingerprint is

SHA256:U6u6eLekctQDr9uy4CKZJeDFjcCWqCI/v9owL1NODcE.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'u-pl15,195.113.21.145' (ECDSA) to the

list of known hosts.

cbna

Configuring SSH Login
Put the following into ~/.ssh/config

Host osy

User USERNAME

PreferredAuthentications publickey,password

HostName uniform.ms.mff.cuni.cz

and you can login simply by typing ssh osy

cbna

Password-less login
SSH supports public/private key login.
You need to generate public/private key pair first.

Do I have one?
ls ~/.ssh look for id_rsa and id_rsa.pub or similar pair.

Generating a new one
ssh-keygen -t RSA

Pass-phrase improves security of the key but also slows-down its usage
(unless you use SSH agent).

cbna

Password-less login (cont.)

Setting up the password-less login to uniform

1 Get your public key (cat ~/.ssh/id_rsa.pub)

2 Login to uniform.ms.mff.cuni.cz normally

3 Copy the public key to the end of ~/.ssh/authorized_keys file
echo 'public-key-here' >> ~/.ssh/authorized_keys

4 Test password-less login

Issues

• Check that ~/.ssh has rwx------ permissions

• Check that authorized_keys has at most rw-r--r--

• Check that you copied the public key correctly (single line etc.)

cbna

Password-less login on Windows

1 Install PuTTY (http://www.putty.org/)
2 Run PuTTY Key Generator

• RSA key
• Save public and private key pair

3 PuTTY configuration
• Session – Host Name: LOGIN@uniform.ms.mff.cuni.cz
• Copy public key to authorized_keys (right click inserts)
• Connection – SSH – Auth – Private key file

cbna

Using the Filesystem

cbna

The Basics

• cd

• ls, ls -l

• find

• chmod

cbna

Midnight Commander
Remember at least the mc command :-)

cbna

Downloading, Unpacking, …
For downloading, use wget.

To unpack, use tar with proper switches.

• x to extract

• f to work with file (must use)

• j to work with .bz2

• z to work with .gz

tar xjf kalisto-0.9.11.tar.bz2

cbna

Accessing Remote Files via SSH FS

• mkdir remote-fs

• sshfs osy:kalisto-0.9.11/ remote-fs/

• Work with files on uniform locally in remote-fs directory

• But compile remotely!

• Do not forget to unmout: fusermount -u remote-fs

cbna

Inspecting Text Files

• cat FILENAME to dump contents to terminal
• less FILENAME to scroll through file (or pipe)

• Use / to search
• Use q to quit

• grep to search for a pattern

cbna

Using Make Build System

cbna

Running Make
If there is Makefile in the current directory, just type make.

Common targets

• make clean Remove all generated files.

• make doc Generate documentation.

• make FILENAME Regenerate particular file.

• make -B … Force rebuild.

cbna

Anatomy of a Makefile

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

gcc main.o -o program

main.o: main.c

gcc -g -Wall -c -o main.o main.c

cbna

Anatomy of a Makefile II

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

gcc main.o -o $@

%.o: %.c

gcc -g -Wall -c -o $@ $<

cbna

Anatomy of a Makefile II12

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

gcc main.o -o $@

%.o: %.c

gcc -g -Wall -c -o $@ $<

cbna

Anatomy of a Makefile III

CC = gcc

CFLAGS = -g -Wall

LD = gcc

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: main.o

$(LD) main.o -o $@

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

cbna

Anatomy of a Makefile IV

CC = gcc

CFLAGS = -g -Wall

LD = gcc

SOURCES = main.c

OBJECTS := $(addsuffix .o,$(basename $(SOURCES)))

all: program

.PHONY: all clean

clean:

rm -f *.o program

program: $(OBJECTS)

$(LD) $(OBJECTS) -o $@

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

cbna

Anatomy of a Makefile V

CC = gcc

CFLAGS = -g -Wall

LD = gcc

SOURCES = main.c

OBJECTS := $(addsuffix .o,$(basename $(SOURCES)))

DEPEND = Makefile.depend

...

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

-include $(DEPEND)

$(DEPEND):

-makedepend -f - -- $(CCFLAGS) -- $(SOURCES) > $@ 2> /dev/null

-[-f $(DEPEND).prev] && diff -q $(DEPEND).prev $@ \

&& mv -f $(DEPEND).prev $@

cbna

From C++ to C

cbna

Things You Cannot Use

• Classes and namespaces

• STL and templates in general

• Function overloading

• Exceptions, RTTI and type casting

• new, static initialization

• Streams

There are ways to bypass these limitations. Not all of them are nice.

Actually, it is possible to write OS kernel in C++ and use namespaces,
exceptions etc. But the OS has to provide run-time support for these
constructs. Kalisto provides no such support at the moment.

cbna

Missing Classes and Namespaces

• object.function(…) is actually classname_function(object, …)

• Prefix identifiers with namespace name
• pthreads are a pretty good example
• Rest of POSIX is definitely not

cbna

Missing STL and Templates

• Templates can be (lamely) emulated with X macros
• Generic data structures are possible

• Simplified linked list in Kalisto
• Full-fledged generic RB-tree, B+ trees or hash tables in HelenOS

cbna

Using list_t

#include <adt/list.h>

/* Structures that are in a list. */

struct my_struct { link_t link; ... }

/* List declaration and initialization. */

static list_t my_list;

list_init (&my_list);

/* Adding to a list. */

struct my_struct *x = malloc(sizeof(struct my_struct));

link_init (&x->link);

list_append (&my_list, &x->link);

/* Iterate through items, it points to my_struct */

list_foreach (my_list, struct my_struct, link, it) { ... }

cbna

No Function Overloading

• _Generic macro in C11

• Wrapper functions with different names

cbna

Error Handling

• Function always returns an error code
• EOK or 0 on success
• Other values passed through parameters

• Error is signalled by negative response, valid handle is always positive
• open() could have had behaved in this way too

• Error is signalled via errno

Always check for errors. Especially in OS code!

cbna

Only malloc is available

• Check for errors

• Use sizeof

• Initialize afterwards

cbna

Static Initialization

• Unavailable directly

• Compiler extensions (__attribute__((constructor)))

• For OS, better to call them directly (ensures proper ordering)

cbna

Type Casting
No run-time support, static cast only.

cbna

Streams and I/O

• No << and >> operators for I/O

• printf for formatted output

• FILE * and fopen, fread/fwrite and fclose

int i = 42;

const char *s = "Hello";

size_t x = sizeof(i);

printf("i = %d [%zuB], s = \"%s\"\n", i, x, s);

// i = 42 [4B], s = "Hello"

cbna

Beware of Undefined Behaviour
int i = INT_MAX + 1

• We might expect it wraps around to INT_MIN

• That is what the CPU instruction probably does
• But C standard says this is undefined so

• it may work as we expect
• or the whole program can do anything

Practical use? Optimizations …
For example, knowing that i++ on int i = 0 may never overflow (because
it is undefined) compiler it can safely assume that i > 0.

cbna

Other Bits

no previous prototype for function with no arguments
Function with no arguments has to be declared as (notice void parameters):
void driver_init(void)

Idiom for multi-command macro
#define SHORTCUT(x,y) do { cmd1(x); cmd2(y) } while (0)

Debugging macro
#define dprintf(fmt, ...) \

printf("[DEBUG %s:%d %s()] " fmt, \

__FILE__, __LINE__, __FUNCTION__, \

#__VA_ARGS__)

cbna

Questions? Comments?

