
NSWI120 - Page 1/2 (exam #2 – 2016.01.29)
Write your answers to the special response sheet you received (with your name and photograph). If you are using more than a single
sheet of paper for your answers, then mark each sheet with its number / total number of sheets you will hand over.

Task 1
As we would like to be prepared in case Skynet seizes
control of the world, we decided to analyze part of T-800
cyborg machine code (that was by accident recorded in the
1984 in “The Terminator” movie by the Orion company –
see left top corner below from time 1:00:44 of said movie):

We found out that T-800 is using a massive multicore 6502
CPU variant – it is an 8-bit CPU with 16-bit physical address
space and accumulator architecture: it contains register A,
two additional general auxiliary registers X and Y, typical
flags register, and one 16-bit register = the PC register.
CPU’s ISA includes the following instructions: LDA (load A),
LDY (load Y), STA (store A), EOR (exclusive or), BPL (branch if
plus) – all having a single explicit argument, and DEY
(decrement Y) instruction with no arguments. All
instructions have usual semantics. We disassembled the T-
800 machine code into standard 6502 assembler – see the
right part of image above – that is using the following
conventions: #$xx is an 8-bit immediate argument, $xxxx =
direct absolute address, expression $xxxx,Y = direct
absolute address computed as ($xxxx + Y), $xxxx being
an immediate and Y is the auxiliary CPU register. Rewrite
the T-800 code into Pascal without using inline assembler in
a way a human programmer would code it. Devise a
suitable name for all global variables used in the original
code and write their complete declaration (think about
data organization in memory).

Task 2
Design a complete HCI of a hard drive controller, i.e. define
all necessary registers, all commands it needs to support,
and a communication protocol towards drivers. The
controller has to support any hard drive with 512 B sectors
and up to H heads, C tracks, S sectors per track, i.e. up to TS
total sectors: TS = H * C * S. The controller has to
support reading and writing data in units of sectors and at
least PIO mode.

Task 3
Assume a computer with Intel 430LX chipset that includes
the Intel 82434LX integrated DRAM memory controller and
Host/PCI bridge. A 32-bit CPU Intel Pentium P54CS with
internal clock frequency of 133 MHz and 16 KiB cache is
connected to a 64-bit FSB with 32-bit address space and 66
MHz clock frequency. The zeroth 32-bit 33 MHz PCI bus
directly connected to the Host/PCI bridge hosts also a
sound card supporting both PIO and DMA bus master
transfers.
We need to transfer 1 MiB of data from the sound card into
this computer’s main memory. Do an educated guess,
which of the PIO or DMA transfers should be faster.
Calculate approximately how many times is the faster
variant faster than the slower one taking into account the
most ideal (but realistic) situation that can happen. Choose
appropriately any additional constants necessary for the
calculation.

Task 4
Design a 16-bit parallel system bus supporting 32-bit
address space and regular read and write transfers (no need
to support burst transfers). Describe and explain all signals
necessary for such a bus to function correctly. Also draw
timing diagrams for single value read and single value write
– you can combine multiple signals into a single row in the
diagram when reasonable.

Task 5

Assume the following function written in Pascal that should
compare two UTF-16 zero-terminated strings for equality,
i.e. returning true, if they both represent the same piece of
text:

type
 PUtf16 = ^word;
function Equivalent(
 s1 : PUtf16; s2 : PUtf16) : boolean;
begin
 Equivalent := true;
 while true do begin
 if s1^ <> s2^ then begin
 Equivalent := false;
 break;
 end;
 if s1^ = 0 then break;
 s1 := s1 + 1; s2 := s2 + 1;
 end;
end;

Does this function work correctly for all possible input string
combinations with respect to standard Unicode semantics?
Explain in detail why.

Task 6

Explain principle of differential transfer and state all pros
and cons. Draw and describe an example timing diagram for
some chosen value.

6085 A0 0A LDY #$0A

6087 B9 E1 60 LDA $60E1,Y

608A 99 F0 03 STA $03F0,Y

608D 88 DEY

608E 10 F7 BPL $6087

6090 AD F3 03 LDA $03F3

6093 49 A5 EOR #$A5

6095 8D F4 03 STA $03F4

NSWI120 - Page 2/2

Task 7
Write in Pascal function Conv with the below stated
declaration, that will translate a non-zero number in
floating-point type single (type single is a 32-bit floating-
point number defined by IEEE 754 standard, i.e. it has a
normalized mantissa [significand] with hidden 1 occupying
lowest 23 bits of the value, followed by 8 bit exponent in
bias +127 format, and the last bit [MSb] is a sign bit) into
16-bit signed integer type integer. The function should
return integral part of the original real number. If the
original value is too small (in between 1 and -1) or the
integral part is out of range of the integer type, the
function should return value 0. Use only Pascal’s integer
arithmetic in all of your code, and consider taking
advantage of bitwise operations supported by Pascal.
function Conv(flt32 : longword) : integer;

Task 8

Assume we are programming support for basic
synchronization primitives as API functions of our OS kernel
supporting preemptive multithreading and targeting
x86/IA-32 processor architecture. Our kernel supports
single processor systems only.
Write in Pascal a Lock record declaration that will represent
state of a standard lock with usual semantics. Also provide
an implementation of Enter (will try to lock a provided lock
for the calling thread – it should use only passive waits if
waiting is necessary) and Exit (will unlock a provided lock
for the calling thread) functions/procedures using the
declared Lock record. Document all code in your
implementation and especially explain necessity of the
core parts of your code. In your code you can use any
reasonable API functions that would be provided by a
typical OS scheduler to the rest of such OS kernel or
applications – do not implement such functions, but provide
a short explanation of their behavior.

Task 9
If a regular program written in Pascal is compiled, does the
entrypoint of the resulting executable file point to the 1st
instruction generated from the program’s main program,
i.e. from begin … end.)? Explain in detail. If not, explain
what code will run before the main program and what are
its tasks.

Task 10
Write in Pascal a program that would take as its first
argument [available as a result of standard Pascal function
ParamStr(1)] a name of a file containing binary image of a
disk partition formatted with the FAT16 file system. The
goal of your program is to find description of the root
directory in the disk image and print out list of all files
contained in it – for every file in the root directory your
program should print file’s name and extension separated
by a comma, information for each file should be on a
separate line. The FAT16 file system supports filenames of
up to 8 characters and up to 3 characters of file extension. If
the file name is shorter than 8 chars or extension is shorter
than 3, they should be padded by spaces from right – e.g. if

the root directory contains the following four files
A.TXT, COMPUTER.EXE, 1STLABEL, and HELLO.A, your
program should print:
 A .TXT
 COMPUTER.EXE
 1STLABEL.
 HELLO .A

Partition’s boot sector contains the basic information about
FAT16 file system’s structure, and has the following format:

Offset |B| Description
0x000 3 First instruction executed as part of the

boot process when booting from this
partition (typically $EB $?? $90)

0x003 8 ASCII string: name of program that
formatted this partition

0x00B 2 Number of bytes per sector (typically 512)
0x00D 1 Number of sectors per cluster
0x00E 2 Number of reserved sectors = number of

sectors (including this boot sector)
preceding the first copy of the FAT table

0x010 1 Number of identical FAT copies (typically 2)
0x011 2 Maximal number of records in the root

directory
0x013 2 Reserved (filled with 0)
0x015 1 Reserved
0x016 2 No. of sectors used by a single FAT copy

The boot sector is followed by a variable amount of
reserved sectors, which are then followed by copies of FAT
table. The FAT tables are directly followed by the root
directory data – beware: the root directory is the only file in
the FAT16 file system that has a fixed beginning (first data
sector of the root directory = first sector directly after the
last sector occupied by the last FAT copy, i.e. “no. of
reserved sectors” + “no. of FAT copies” * “no. of sectors per
single FAT”). All of the root directory’s data sectors are
preallocated continuously one after other when the
partition was formatted and are not managed by the FAT
table. Total number of root directory data sectors is implied
by the maximal number of its records, as defined in the
boot sector. Every directory record looks as:

Offset |B| Description
0x00 8 ASCII string: file name (padded from right

by spaces = ASCII code $20). Value 0x00 or
0xE5 in the byte 0 implies an unused
directory record → it does not have any
meaningful info stored in its bytes 1-31.

0x08 3 ASCII string: file extension (padded from
right by spaces). Files without an extension
have this field filled with 3 spaces.

0x0B 1 Flags: bit 4: 0 = a file, 1 = a directory
0x0C 10 Reserved
0x16 2 Last file modification time
0x18 2 Last file modification date
0x1A 2 First data cluster number of this file
0x1C 4 File length in bytes

Note: your program should support disk images with up to 4
kB sectors.

