
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Contracts: Specification
and Verification

Pavel Parízek

Behavior specification using contracts

Pavel Parízek Contracts: Specification and Verification 2

Target: program fragment
class, object, method (procedure), loop body

Purpose: define responsibilities
Implementation (provider, method, object)

Client (caller method, another component)

Method contract

Object contract

Method contract

Pavel Parízek Contracts: Specification and Verification 3

Precondition
Specifies constraints on parameter values and valid states
of a target object

Logic formula that must hold at the entry to the method

“caller responsibility”

Postcondition
Specifies constraints on the return value and side effects

Captures relation between the initial and final state of the method

Logic formula that must hold at the exit from the method

“implementation responsibility”

Method contract: example

Pavel Parízek Contracts: Specification and Verification 4

Program
 public class ArrayList {

 public void add(int index, Object obj) {

 ...

 }

 public int size() { ... }

 }

Textual documentation
 “Value of the index parameter has to be greater than or equal to zero.
 Successful call of add increases the size of the array by one.”

Formal contract
 public void add(int index, Object obj)

 requires index >= 0;

 ensures size = old(size) + 1;

 { ... }

Object contract

Pavel Parízek Contracts: Specification and Verification 5

Object invariant

Specifies valid object states (e.g., values of fields)

Logic formula that must hold at the entry and exit
of each method defined for the object

How to define contracts

Pavel Parízek Contracts: Specification and Verification 6

Three ways

Source code comments

Explicit annotations

Built-in language constructs

Contract specification languages

Spec#, JML, Code Contracts, ...

Spec#

Pavel Parízek Contracts: Specification and Verification 7

Programming system
Developed by Microsoft Research
http://research.microsoft.com/en-us/projects/specsharp/

Main components
Programming language

Extension of C# with contracts

Spec# compiler
Inserts run-time checks for contracts into the code

Verifier: Boogie

http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/
http://research.microsoft.com/en-us/projects/specsharp/

Spec# language

Pavel Parízek Contracts: Specification and Verification 8

class ArrayList {

 public virtual object Insert(int index, object value)

 requires 0 <= index && index <= Count;

 ensures value == this[index];

 ensures Count = old(Count) + 1;

 ensures result == old(this[index]);

 {

 ...

 int i = count;

 while (i >= index)

 loop invariant i >= index - 1;

 {

 data[i+1] = data[i];

 i--;

 }

 }

}

precondition

postcondition

initial value return value

must hold before and
after each iteration

JML: Java Modeling Language

Pavel Parízek Contracts: Specification and Verification 9

Contract definition language for Java
http://www.eecs.ucf.edu/~leavens/JML/index.shtml

Differences from Spec#
Contracts defined in source comments

No built-in Java language constructs

Example
 /*@

 @ requires E1;

 @ ensures E2;

 @*/

 public int doSmth() { ... }

Verification tool: ESC/Java2
http://kindsoftware.com/products/opensource/ESCJava2/

http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://www.eecs.ucf.edu/~leavens/JML/index.shtml
http://kindsoftware.com/products/opensource/ESCJava2/
http://kindsoftware.com/products/opensource/ESCJava2/

Advanced features of Spec# and JML

Pavel Parízek Contracts: Specification and Verification 10

Exceptional behavior
Constraints on the resulting state when an exception
is thrown inside the method

Model fields (“ghost”)
Abstract fields visible only in the contracts

Quantifiers (∃,∀)
Spec#: Exists and Forall

Behavioral subtyping
Inheritance of contracts

Frame conditions
List of fields which the method can modify

Verification of program against contracts

Pavel Parízek Contracts: Specification and Verification 11

Verification of program against contracts

Pavel Parízek Contracts: Specification and Verification 12

Goal

Checking consistency between the method’s
implementation and its contract

ϕ: precondition ∧ implementation → postcondition

Target: Spec#

Boogie program verifier, SMT solver Z3

Verifying Spec# contracts with Boogie

Pavel Parízek Contracts: Specification and Verification 13

Input
Spec# program (C# annotated with contracts)

Set of axioms that describe semantics of Spec#

Axioms
Semantics

Type system (subtyping)

Size of constants

Examples
All classes are subtypes of System.Object

Forall T:type . T <: superclass(T)

result

Boogie

Spec#
compiler

Spec#

CIL

byte code
translation

BoogiePL

Verifying Spec# contracts with Boogie

Pavel Parízek Contracts: Specification and Verification 14

Algorithm

Translate Spec# program into BoogiePL

Generate verification condition (VC) from
the BoogiePL program

Run the SMT solver on the VC

Result: “no error found” or counterexample

Post-processing of the result

Mapping counterexample back to the source
language (Spec#)

Spec#
compiler

Spec#

CIL

byte code
translation

BoogiePL

Generating VC

SMT solver Z3

Post-processing

result

Boogie

Running example

Pavel Parízek Contracts: Specification and Verification 15

int M(int x)

 requires 100 <= x; // precondition

 ensures result == 0; // postcondition

{

 while (0 < x)

 invariant 0 <= x; // loop invariant

 {

 x = x – 1;

 }

 return x;

}

Example program in Spec# taken from:
M. Barnett and R. Leino. Weakest-Precondition of Unstructured Programs.
PASTE 2005, ACM Press

Translation from Spec# to BoogiePL

Pavel Parízek Contracts: Specification and Verification 16

int M(int x)

 requires 100 <= x; // precondition

 ensures result == 0; // postcondition

{

 while (0 < x)

 invariant 0 <= x; // loop invariant

 {

 x = x – 1;

 }

 return x;

} Start: assume 100 <= x; // precondition

 goto Head;

Head: assert 0 <= x; // loop invariant

 goto Body, After;

Body: assume 0 < x; // loop guard

 x := x - 1;

 goto Head;

After: assume not(0 < x); // neg loop guard

 r := x; // return

 assert r = 0; // postcondition

 goto ;

BoogiePL

Pavel Parízek Contracts: Specification and Verification 17

Program structure
A program is a set of basic blocks (label, statements)
Successor blocks are targets of the goto statement

Semantics

Program defines a large set of execution traces
State = values of all variables + program counter
Arbitrary initial values of all program variables

Important statements

goto label1, label2 non-deterministic choice
goto ; the execution trace terminates successfully
assume E filters out execution traces not satisfying E
assert E if E is false, then a trace ends with an error

Generating verification condition (VC)

Pavel Parízek Contracts: Specification and Verification 18

Construction of an acyclic program (AP)

Eliminating loops (back edges in control-flow)

Transforming into an acyclic passive program (APP)

No assignments allowed in APP

Generating verification condition from the APP

Construction of acyclic program

Pavel Parízek Contracts: Specification and Verification 19

What must be still checked in AP

Loop invariant holds before the loop starts

Any iteration does not break the invariant

Consequence

Loop invariant holds at the exit from the loop

Eliminating loops

Abstraction of an arbitrary number of loop iterations

Unrolling the loop body

Abstracting loop iterations

Pavel Parízek Contracts: Specification and Verification 20

Start: assume 100 <= x;

 assert 0 <= x; // check loop invariant

 goto Head;

Head: havoc x; // reset variables used in the loop

 assume 0 <= x; // assume loop invariant

 goto Body, After;

Body: assume 0 < x;

 x := x - 1;

 assert 0 <= x;

 goto ;

After: assume not(0 < x);

 r := x;

 assert r = 0;

 goto ;

Unrolling loop body

Pavel Parízek Contracts: Specification and Verification 21

Start: assume 100 <= x;

 assert 0 <= x; // check loop invariant

 goto Head;

Head: havoc x; // reset variables used in the loop

 assume 0 <= x; // assume loop invariant

 goto Body, After;

Body: assume 0 < x;

 x := x - 1;

 assert 0 <= x; // check loop invariant

 goto ; // back edge removed

After: assume not(0 < x);

 r := x;

 assert r = 0;

 goto ;

AP: acyclic program

Pavel Parízek Contracts: Specification and Verification 22

Start: assume 100 <= x;

 assert 0 <= x; // check loop invariant

 goto Head;

Head: havoc x; // reset variables used in the loop

 assume 0 <= x; // assume loop invariant

 goto Body, After;

Body: assume 0 < x;

 x := x - 1;

 assert 0 <= x; // check loop invariant

 goto ; // back edge removed

After: assume not(0 < x);

 r := x;

 assert r = 0;

 goto ;

Transforming into acyclic passive programs

Pavel Parízek Contracts: Specification and Verification 23

Passive program

No destructive update allowed

Two steps

Rewrite into a single-assignment form

Removing all assignment statements

Rewriting into single-assignment form

Pavel Parízek Contracts: Specification and Verification 24

Start: assume 100 <= x0;

 assert 0 <= x0;

 goto Head;

Head: skip; // ”havoc x1” not necessary anymore

 assume 0 <= x1;

 goto Body, After;

Body: assume 0 < x1;

 x2 := x1 - 1;

 assert 0 <= x2;

 goto ;

After: assume not(0 < x1);

 r1 := x1;

 assert r1 = 0;

 goto ;

Rewriting into single-assignment form

Pavel Parízek Contracts: Specification and Verification 25

Problem
Join points (after choice)
 x0 := ...;

 if (E) { x1 := ...}

 else { x2 := ...}

 Q: how to solve this problem ?

Rewriting into single-assignment form

Pavel Parízek Contracts: Specification and Verification 26

Problem
Join points (after choice)
 x0 := ...;

 if (E) { x1 := ...}

 else { x2 := ...}

Solution
x0 := ...;

if (E) { x1 := ...; x3 := x1 }

else { x2 := ...; x3 := x2 }

Removing assignment statements

Pavel Parízek Contracts: Specification and Verification 27

Start: assume 100 <= x0;

 assert 0 <= x0;

 goto Head;

Head: skip;

 assume 0 <= x1;.

 goto Body, After;

Body: assume 0 < x1;

 assume x2 = x1 - 1;

 assert 0 <= x2;

 goto ;

After: assume not(0 < x1);

 assume r1 = x1;

 assert r1 = 0;

 goto ;

APP: acyclic passive program

Pavel Parízek Contracts: Specification and Verification 28

Start: assume 100 <= x0;

 assert 0 <= x0;

 goto Head;

Head: skip;

 assume 0 <= x1;.

 goto Body, After;

Body: assume 0 < x1;

 assume x2 = x1 - 1;

 assert 0 <= x2;

 goto ;

After: assume not(0 < x1);

 assume r1 = x1;

 assert r1 = 0;

 goto ;

Encoding control flow into logic formula

Pavel Parízek Contracts: Specification and Verification 29

Boolean variable Bok is defined for each basic block B
Bok = true all possible executions of B and its successors
from the current state are correct

Block equation Bbe is defined for each basic block B

Startbe: Startok ↔ 100 <= x0 ⇒ (0 <= x0 ∧ Headok)

Headbe: Headok ↔ 0 <= x1 ⇒ (Bodyok ∧ Afterok)

Bodybe: Bodyok ↔ 0 < x1 ⇒ (x2 = x1 – 1 ⇒ 0 <= x2)

Afterbe: Afterok ↔ ¬(0 < x1) ⇒ (r1 = x1 ⇒ r1 = 0)

Generating verification condition

Pavel Parízek Contracts: Specification and Verification 30

Startbe: Startok ↔ 100 <= x0 ⇒ (0 <= x0 ∧ Headok)
Headbe: Headok ↔ 0 <= x1 ⇒ (Bodyok ∧ Afterok)
Bodybe: Bodyok ↔ 0 < x1 ⇒ (x2 = x1 – 1 ⇒ 0 <= x2)
Afterbe: Afterok ↔ ¬(0 < x1) ⇒ (r1 = x1 ⇒ r1 = 0)

VC: Axioms ∧ Startbe ∧ Headbe ∧ Bodybe ∧ Afterbe ⇒ Startok

What does the verification condition mean

Pavel Parízek Contracts: Specification and Verification 31

 Axioms ∧ Startbe ∧ Headbe ∧ Bodybe ∧ Afterbe ⇒ Startok

a run of the program according to semantics of Spec#

postcondition not violated

Contracts and procedure calls

Pavel Parízek Contracts: Specification and Verification 32

Idea: use contracts of individual procedures

Procedure calls

...

call M

...

assert precondition of M

havoc fields modified by M

assume postcondition of M

Verification of contracts: limitations

Pavel Parízek Contracts: Specification and Verification 33

Incompleteness
First-order predicate calculus is semi-decidable

Verification tool may run forever on some inputs (programs)

Making tools less precise spurious warnings

Modular verification
Analyze procedures separately (one at a time)

Cannot detect errors depending on internal behavior
of other procedures (with partial contracts)

Better performance and scalability
Verification applicable to real-world programs

Tools

Pavel Parízek Contracts: Specification and Verification 34

Spec#

http://riseforfun.com/SpecSharp/

VCC: Verifier for Concurrent C

http://research.microsoft.com/en-us/projects/vcc/

Target domain: low-level concurrent systems (e.g., OS)

Challenge: verify programs with threads and pointers

Solution: object ownership

Thread can write only to objects that it owns in the given state

Thread can read only objects that it owns or does not change

http://riseforfun.com/SpecSharp/
http://riseforfun.com/SpecSharp/
http://research.microsoft.com/en-us/projects/vcc/
http://research.microsoft.com/en-us/projects/vcc/
http://research.microsoft.com/en-us/projects/vcc/
http://research.microsoft.com/en-us/projects/vcc/

Disclaimer

Pavel Parízek Contracts: Specification and Verification 35

Code Contracts

Similar definition language

Method preconditions and postconditions, invariants

Different verification algorithm

Mostly based on abstract interpretation (lecture 9)

You will see more today during the labs

Further reading

Pavel Parízek Contracts: Specification and Verification 36

M. Barnett, K.R.M. Leino, and W. Schulte. The Spec#
Programming System: An Overview. CASSIS 2004

M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K.R.M. Leino. Boogie: A Modular Reusable Verifier for
Object-Oriented Programs. FMCO 2005

M. Barnett and K.R.M. Leino. Weakest-Precondition of
Unstructured Programs. PASTE 2005, ACM

K.R.M. Leino. Dafny: An Automatic Program Verifier
for Functional Correctness. LPAR 2010

http://research.microsoft.com/en-us/projects/dafny/

http://research.microsoft.com/en-us/projects/dafny/
http://research.microsoft.com/en-us/projects/dafny/
http://research.microsoft.com/en-us/projects/dafny/
http://research.microsoft.com/en-us/projects/dafny/

