Concurrency Errors

http://d3s.mff.cuni.cz

Department of
Distributed and
Dependable

Pavel Parizek

G %)
el N e
“:

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics



Basic taxonomy of concurrency bugs

° Data race condition (unsynchronized access)
* Deadlock caused by incorrectly nested locking

* Deadlock caused by missed notification (early)
* Atomicity violation (inconsistent data values)

° Ordering violation (method calls in two threads)
® Spurious wake-up (forgotten condition check)

Pavel Parizek Concurrenc y Errors 2



Data race condition

Producer.run () { Consumer.run () {
while (true) { while (true) {
synchronized (buf) ({ if (count > 0) {
buf.add(...); synchronized (buf) {
} ... = buf.get(0);
count++; }
} }
} --count;
}
}

public static List buf;

main () {
(new Producer()) .start();
(new Consumer ()) .start();

Pavel Parizek Concurrency Errors 3



Deadlock caused by incorrectly nested locks

Producer.run () { Consumer.run () {
while (true) { while (true) {
synchronized (coord) { synchronized (buf) ({
synchronized (buf) ({ synchronized (coord) {
buf.add(...); ... = buf.get(0);
} }
count++; —-—count;
} }
} }
} }

public static List buf;

main () {
(new Producer()) .start();
(new Consumer ()) .start();

Pavel Parizek Concurrency Errors 4



Deadlock caused by missed notification

Subject.run () { Observer.run () {
synchronized (events) { synchronized (events) {
events.add(...); events.wait() ;
events.notify () ; ... = events.get (0);

} }

public static List events = ...

main () |
(new Subject()) .start();
(new Observer()) .start();

Pavel Parizek Concurrency Errors



Atomicity violation

Reader.run () { Writer.run () {
synchronized (db) { synchronized (db) {
x = db.valuel; db.valuel = 10;
} db.value?2 = 20;
synchronized (db) { }

y = db.value?2;
} }

Database db =

main () {
(new Reader (db)) .start();
(new Writer (db)) .start();

Pavel Parizek Concurrency Errors 6



Ordering violation

Server.run () { Worker.run () {
. .. while (true) {
startInit(); waltForRequest () ;
for (Worker w : workers) { openDatabase () ;

w.start () ; executeDBQuery () ;
} processResults () ;
finishInit(); sendResponse () ;
}
} }

Pavel Parizek Concurrency Errors 7



Spurious wake-up

Producer.run () {
synchronized (buf) {

while (count >= MAX) {
buf.wait() ;

}

buf.add(...);

count++;

buf.notify();

Consumer.run () {
synchronized (buf)
if (count 0) {
buf.wait() ;

= buf.get (0) ;
—-—count;
buf.notify();

{

public static List buf;
main () {
(new Producer()) .start();
(new Consumer ()) .start();
(new Consumer ()) .start();
}

Pavel Parizek

Concurrency Errors




Detecting concurrency bugs

Pavel Parizek Concurrenc y Errors 9



Detecting concurrency bugs

® Basic approach

= Exhaustive state space traversal with non-deterministic
thread choices by a model checker (JPF)

* Selected variants of state space traversal

= Using custom runtime to control thread scheduling and
synchronization operations

" Bounding the number of thread preemptions
= QOptimizations (e.g., preemption sealing)

®* Other approaches

= Computing the lock-set analysis
= Happens-before relation (order)

Pavel Parizek Concurrency Errors 10



Exhaustive state space traversal with thread choices (JPF)

* Single root node O

= |nitial program state -

°* Thread choices

T1
* State matching
* Backtracking




Using custom runtime

® Controls thread scheduler in the operating system

® Custom library for synchronization primitives

= source code instrumentation, dynamic linking

* Tracking execution of statements accessing the
global state (heap objects, locks)

= source code instrumentation, dynamic monitoring

Q: is there any problem with this approach ?

Pavel Parizek Concurrenc y Errors 12



Executing program with different schedules

® Restart program execution many times

= Each time with a different thread interleaving
* Keep track of explored thread schedules

® Stateless traversal

" no set of visited states, no state matching

Pavel Parizek Concurrenc y Errors 13



Bounded number of preemptions

®* Motivation: errors triggered with few thread
preemptions (2-5) and few threads (2)

® Limit the number of thread preemptions
® Systematic exploration within the given bound

® Common alternative name: context bounding

Q: can we do even better (improve coverage) ?

Pavel Parizek Concurrenc y Errors 14



Bounded number of preemptions

®* Motivation: errors triggered with few thread
context switches (2-5) and few threads (2)

® Limit the number of thread preemptions
® Systematic exploration within the given bound

® Common alternative name: context bounding

A: iteratively increasing the context bound

Pavel Parizek Concurrenc y Errors 15



Bounded number of preemptions

* Method limitations

= |gnores concurrency errors triggered by more
context switches (preemptions)

= Checks program behavior only for a single input

®* Remedy: symbolic execution

°* Theoretical complexity: NP-complete

Pavel Parizek Concurrenc y Errors 16



Preemption sealing

* Disable thread choices in
= System libraries (e.g., core and collections)

= Already explored state space fragments
* Method tested during previous runs of the checker
® Code triggering already known concurrency bugs

Pavel Parizek Concurrency Errors 17



CHESS: Systematic Concurrency Testing

® Main features
® Custom runtime with scheduler
= Stateless traversal with fairness
" |terative context-bounding

® Supported platforms
= C#, C/C++, Win32, .NET

® Further information & source code
= http://research.microsoft.com/en-us/projects/chess/
= http://chesstool.codeplex.com/



http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://chesstool.codeplex.com/

Context bounding done another way

* Transforming concurrent programs to
sequential programs

= Approach: source-to-source translation

Q: how this can be done ?

Pavel Parizek Concurrenc y Errors 19



Context bounding done another way

* Transforming concurrent programs to sequential
programs

= Approach: source-to-source translation
®* Model checking the sequential program

®* Thread preemption
" non-deterministic data choice
= jump to another code location
= set up execution context (stack)

®* Program state: cross-product of local variables of
all threads and global variables

Concurrenc y Errors 20



Lock-set analysis

® Find the set of locks held at each access to a
shared global variable

® Check whether accesses to shared variables
follow a consistent locking discipline

®* Two concurrent accesses to a global variable
" Empty intersection of lock sets =» data race

®* Every access to a shared variable protected by
the same lock
" Thread using a different lock than before =2 data race

21



Happens-before ordering (relation)

* Relationships between synchronization events

= causal, temporal, execution flow
* Partial happens-before ordering

°* Example 1: wait — notify
* Example 2: lock release —lock acquire

* Ordering between field accesses =2 no data race



Defining correctness of concurrent programs

Pavel Parizek Concurrenc y Errors 23



Correctness conditions

°* Example: LinkedList

= Operations: add(o), get(i), remove(i), size()
* Data race freedom
* Serializability (atomicity)

= No overlap between concurrent actions

* Linearizability

Pavel Parizek Concurrenc y Errors 24



Linearizability

® Concurrent history H
= Operation: invoke, result
= Partial order: e, <, e, if res(e,) precedes inv(e,)

® Linearizable concurrent history H

= Exists serial witness that respects partial order and
every operation has the same result value as in H

* Set of concurrent operations

= Every possible concurrent history is linearizable with
respect to a sequential specification

Pavel Parizek Concurrency Errors 25



Verifying linearizability

® Linearization points

= Operations must appear to take their effect at
some instant between the call and return

® State space traversal
= Phase 1: find all possible sequential histories

= Phase 2: explore concurrent histories
* |dentify corresponding serial witness for each

°* More complicated algorithmic techniques

Pavel Parizek Concurrency Errors 26



Relaxed memory models

Pavel Parizek Concurrenc y Errors 27



Relaxed memory models

* Defines valid program transformations

= System: compiler, virtual machine, hardware

°* Motivation: optimizing performance

® Possible transformations

= Reordering write accesses to a shared variable in a
given thread

= Delaying propagation of the new value of a global
variable to other threads (shared memory)

Pavel Parizek Concurrenc y Errors 28



Relaxed memory models

* Sequential consistency
® Data race free models

® Case study: Java Memory Model

Pavel Parizek Concurrenc y Errors 29



Sequential consistency

s ® s © s © s
°* Memory accesses execute one at a given time
* Total order of memory accesses (read, write)

® Reads observe the most recent written value

* Each thread must respect the program order

= Order defined by the source code (developer)

Pavel Parizek Concurrenc y Errors 30



Java Memory Model

®* Datarace free programs behave correctly
= Guaranteed sequentially consistent semantics

®* Program with data races = up to the developer
= Model provides only weak guarantees

® Memory barriers
" Boundaries of synchronized blocks
= Accessing volatile variables

* Defined formally using the happens-before ordering
= Very complex (many rules): lot of research papers about it

® Used since J2SE 5.0

Pavel Parizek Concurrency Errors 31



Hardware memory models

* Total Store Order (TSO)

= Delaying writes (stores) relative to subsequent reads
(loads) on the same processor

" CPU architecture: x86

® Partial Store Order (PSO)

= Additionally, delaying stores relative to other stores (to
different memory locations) on the same processor

® Partial Store Load Order (PSLO)

= Additionally, permits reordering loads to execute before
previous loads and stores on the same processor

Pavel Parizek Detecting Concurrency Errors 32



Relaxed memory models: verification support

® Java PathRelaxer
® CHESS: limited

* Some tools for checking program behavior on
hardware memory models (especially TSO)

Pavel Parizek Concurrenc y Errors 33



Data races
s ® s © s © s
® Benign
= Optimizing performance on multi-core CPUs
= Exploiting properties of the memory model

= Very hard to get the implementation right

= Casestudy: java.util.concurrent

® Erroneous

= Missing thread synchronization by a developer mistake

®* Some people call for a “total ban” on data races

Pavel Parizek Concurrency Errors 34



ABA problem

Q: can you tell me what it means ?

Pavel Parizek Detecting Concurrency Errors 35



ABA problem

* |dea: same value but something changed

* Typical for lock-free data structures

Pavel Parizek Detecting Concurrency Errors 36



Further reading

—m

® M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic
Testing of Multithreaded Programs. PLDI 2007

® M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and |. Neamtiu.
Finding and Reproducing Heisenbugs in Concurrent Programs. OSDI 2008

®* S.Qadeer and D. Wu. KISS: Keep it Simple and Sequential. PLDI 2004

®* N. Ghafari, A. Hu, and Z. Rakamaric. Context-Bounded Translations for
Concurrent Software: An Empirical Evaluation. SPIN 2010

® S.Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM
Transactions on Computer Systems, 15(4), 1997

® S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-Up: A Complete
and Automatic Linearizability Checker. PLDI 2010

® J. Manson, W. Pugh, and S.V. Adve. The Java Memory Model. POPL 2005

Pavel Parizek Detecting Concurrency Errors 37



