
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Model Checking
Programs

Pavel Parízek

Model checking

Pavel Parízek Model Checking Programs 2

p p, q

p p, q

LTL: p  F q

Structure M Formula f

Verification task: M, s ╞ f ?

Model checking SW and HW

Pavel Parízek Model Checking Programs 3

Goals

Systematic exploration of all possible behaviors

Example: all possible interleavings of concurrent threads

Checking required properties in each state (path)

Model

Source code (binary)  program state space

Property

assertion, deadlock freedom, no data races, ...

Program state space

Pavel Parízek Model Checking Programs 4

Directed graph

States

Transitions

States

Pavel Parízek Model Checking Programs 5

 Q: What does a program state contain ?

States

Pavel Parízek Model Checking Programs 6

Local state of each thread

Program counter (PC)

Call stack (parameters, local variables, operands)

Global state shared between multiple threads

Heap objects (field values) and pointers

Status of each thread (runnable, waiting, ...)

Thread synchronization primitives (locks)

Transitions

Pavel Parízek Model Checking Programs 7

 Q: What about transitions ?

Transitions

Pavel Parízek Model Checking Programs 8

Statements (instructions)

Updating states (PC, variables)

Program state space

Pavel Parízek Model Checking Programs 9

Directed graph

States

Transitions

what else ?

Program state space

Pavel Parízek Model Checking Programs 10

Directed graph

States

Transitions

Choices

Choices

Pavel Parízek Model Checking Programs 11

 Q: What types of choices there are ?

Choices

Pavel Parízek Model Checking Programs 12

Thread scheduling

Data

Unknown inputs

Program state space

Pavel Parízek Model Checking Programs 13

States

Transitions

Choices

PC: 3, i: 0

PC: 4, i: 1

PC = PC+1, i++

PC: 5, i: 3 PC: 5, i: 2

PC = PC+1, i = choose-int(2,3)

Example: producer – consumer

Pavel Parízek Model Checking Programs 14

public Producer extends Thread {

 void run() {

 while (true) {

 buf.add(++i);

 }

 }

}

public Consumer extends Thread {

 void run() {

 while (true) {

 i = buf.get(0);

 print(i);

 }

 }

}

public static List buf;

(new Producer(var)).start();

(new Consumer(var)).start();

P: start

P: i++
P: buf.add(i)

C: start

C: start
P: i++
P: buf.add(i)

P: i++
P: buf.add(i) C: i = buf.get(0)

Terminology

Pavel Parízek Model Checking Programs 15

Reachable state space

From the initial program state

Error state

Safety

Error state is not reachable

all states

reachable
state space

E

E

Properties

Pavel Parízek Model Checking Programs 16

Categories

State

Path

Properties

Pavel Parízek Model Checking Programs 17

 Q: Divide properties into categories

Properties
no deadlock
data race
assertion
LTL formula

Category
state
path

Properties

Pavel Parízek Model Checking Programs 18

Properties
no deadlock
assertion
LTL formula
data race

Category
state
path
multiple paths

State space traversal

Pavel Parízek Model Checking Programs 19

State space traversal

Pavel Parízek Model Checking Programs 20

Explicit traversal of the concrete state space

SAT-based traversal of symbolic state space

Explicit state space traversal

Pavel Parízek Model Checking Programs 21

DFS: depth-first search

From the node corresponding to the initial state

Properties checked in each state

Error state reached  counterexample

Counterexample (error trace)

Path in the state space that violates given property

Explicit state space traversal with DFS

Pavel Parízek Model Checking Programs 22

INIT

 visited : = {s0}

 push(stack, s0)

 DFS(s0)

end INIT

DFS(s)

 for each t in enabled(s) do

 s’ := t(s)

 if not P(s’) then

 counterexample := stack

 exit

 if s’ not in visited then

 visited := visited + {s’}

 push(stack, s’)

 DFS(s’)

 pop(stack)

 end for

end DFS()

Explicit state space traversal with DFS

Pavel Parízek Model Checking Programs 23

INIT

 visited : = {s0}

 push(stack, s0)

 DFS(s0)

end INIT

DFS(s)

 for each t in enabled(s) do

 s’ := t(s)

 if not P(s’) then

 counterexample := stack

 exit

 if s’ not in visited then

 visited := visited + {s’}

 push(stack, s’)

 DFS(s’)

 pop(stack)

 end for

end DFS()

Explicit state space traversal with DFS

Pavel Parízek Model Checking Programs 24

INIT

 visited : = {s0}

 push(stack, s0)

 DFS(s0)

end INIT

DFS(s)

 for each t in enabled(s) do

 s’ := t(s)

 if not P(s’) then

 counterexample := stack

 exit

 if s’ not in visited then

 visited := visited + {s’}

 push(stack, s’)

 DFS(s’)

 pop(stack)

 end for

end DFS()

Executing

transitions

Explicit state space traversal with DFS

Pavel Parízek Model Checking Programs 25

INIT

 visited : = {s0}

 push(stack, s0)

 DFS(s0)

end INIT

DFS(s)

 for each t in enabled(s) do

 s’ := t(s)

 if not P(s’) then

 counterexample := stack

 exit

 if s’ not in visited then

 visited := visited + {s’}

 push(stack, s’)

 DFS(s’)

 pop(stack)

 end for

end DFS()

Evaluating

properties

Explicit state space traversal with DFS

Pavel Parízek Model Checking Programs 26

INIT

 visited : = {s0}

 push(stack, s0)

 DFS(s0)

end INIT

DFS(s)

 for each t in enabled(s) do

 s’ := t(s)

 if not P(s’) then

 counterexample := stack

 exit

 if s’ not in visited then

 visited := visited + {s’}

 push(stack, s’)

 DFS(s’)

 pop(stack)

 end for

end DFS()
State matching

State space traversal with DFS – example

Pavel Parízek Model Checking Programs 27

1

2

7 3

Random rnd = new Random();

int i = 2;

int j = 0;

int c = rnd.nextInt(3);

if (c == 1)

 j++;

else if (c == 2) {

 j = 1;

 c = 1;

}

int k = i / j;

init

i = 2, j = 0

i = 2, j = 0
c = 1

i = 2
j = 0
c = 0

4
i = 2, j = 1
c = 1

5

i = 2, j = 1
c = 1
k = 1

8

6

i = 2
j = 0
c = 2

Stack: 1,2,6

Visited states: {1,2,3,4,5,6}

State space traversal with DFS – example

Pavel Parízek Model Checking Programs 28

1

2

7 3

Random rnd = new Random();

int i = 2;

int j = 0;

int c = rnd.nextInt(3);

if (c == 1)

 j++;

else if (c == 2) {

 j = 1;

 c = 1;

}

int k = i / j;

init

i = 2, j = 0

i = 2, j = 0
c = 1

i = 2
j = 0
c = 0

4
i = 2, j = 1
c = 1

5

i = 2, j = 1
c = 1
k = 1

8

6

i = 2
j = 0
c = 2

Stack: 1,2,7

Visited states: {1,2,3,4,5,6,7} division by zero!

Model checking programs: limitations

Pavel Parízek Model Checking Programs 29

Limitations

Pavel Parízek Model Checking Programs 30

Decidability

For many interesting programs and interesting
properties, model checking is undecidable

Example: assertion checking

Undecidable for multi-threaded programs with procedures

Decidable for single-threaded boolean programs

Limitations

Pavel Parízek Model Checking Programs 31

Possibly infinite state systems

 Q: What can make the state space infinite ?

Limitations

Pavel Parízek Model Checking Programs 32

Possibly infinite state systems

Data types with large or infinite domains (int, float)

Unbounded heap and number of threads

Unbounded recursion of procedure calls (stack)

Remedy: abstraction

Limitations

Pavel Parízek Model Checking Programs 33

State explosion

a non-trivial program has too many states

the state space contains too many choices

State space size exponential with respect to

Number of threads

Size of data domains

State explosion

Pavel Parízek Model Checking Programs 34

High number of concurrent program threads

Many instructions executed by each thread

State explosion

Pavel Parízek Model Checking Programs 35

Consequences

Exploring too many choices, states, and transitions

Storing too many states in memory

 model checker runs out of memory and time

Model checking of large and complex programs
is not practically feasible

... but many research teams are working on this

State explosion

Pavel Parízek Model Checking Programs 36

 Q: So what can we do with state explosion ?

a

b

c

d

c

b

c

a d

d

a

b

T1: a ; b
T2: c ; d

Partial order reduction

Pavel Parízek Model Checking Programs 37

Most transitions perform operations local to
a given thread

Examples: arithmetic over stack operands (in
Java), updating local variables

Global operations (statements)

Field access on a shared heap object

Thread synchronization (lock, wait)

Partial order reduction

Pavel Parízek Model Checking Programs 38

Independent transitions

Performing only thread-local statements

All their interleavings give the same result

a

b

c

d

c

b

c

a d

d

a

b

a

b

c

d

Partial order reduction

Pavel Parízek Model Checking Programs 39

Independent transitions

Commutative  any ordering is valid

Execution of one does not disable others

All the possible interleavings of independent
transitions from a given state are equivalent

Partial order reduction

Pavel Parízek Model Checking Programs 40

Practical approach
Scheduling choices only at statements that represent
communication among threads (conflicts)

Communication statement
may have effects visible to other concurrent threads

may depend on other threads by reading shared data

Why thread choice
Let other threads react or modify shared data

Addressing state explosion

Pavel Parízek Model Checking Programs 41

Symmetry reductions

Heuristics

Symmetry reductions

Pavel Parízek Model Checking Programs 42

Two states: s1, s2

State matching: s1 != s2

Program execution: s1 == s2

Goal: avoid repeated processing of such states

Approach

Divide state space into equivalence classes

Explore only canonical representation

Symmetry reductions

Pavel Parízek Model Checking Programs 43

Class loading order

Heap addresses

Partial order reduction

Class loading symmetry

Pavel Parízek Model Checking Programs 44

Program execution
Actual position of class data in the static area does
not influence observable behavior

Model checkers
Internal representation of program states

Class loading order matters in some cases

Solution
Canonical representation of the static area

Fixed order of class loading over all state space paths

Heap symmetry

Pavel Parízek Model Checking Programs 45

Program execution
Exact address of a heap object does not influence
observable behavior

Model checkers
Internal representation of program states

Heap shape and layout matters in some cases

Solution: heap canonicalization
Canonical addresses of heap objects

Issues: garbage collection, deallocation

Heuristics

Pavel Parízek Model Checking Programs 46

Motto

“find an error before the model checker runs out
of memory and time (resources)”

Better testing: find many errors in reasonable time

Approach

Focus on state space fragments with errors

Guide model checker towards possible error states

Identify and drop error-free parts of the state space

State space traversal with heuristics

Pavel Parízek Model Checking Programs 47

INIT

 visited := {s0}

 push(stack, s0)

 DFS(s0)

end INIT

DFS(s)

 workSet := enabled(s)

 for each t in workSet do

 s’ := t(s)

 if not P(s’) then

 counterexample := stack

 exit

 if s’ not in visited then

 visited := visited + {s’}

 push(stack, s’)

 DFS(s’)

 pop(stack)

 end for

end DFS()

INIT

 visited := {s0}

 push(stack, s0)

 BeFS(s0)

end INIT

BeFS(s)

 workList := order(enabled(s), h)

 for each t in workList do

 s’ := t(s)

 if not P(s’) then

 counterexample := stack

 exit

 if s’ not in visited then

 visited := visited + {s’}

 push(stack, s’)

 BeFS(s’)

 pop(stack)

 end for

end BeFS()

“standard” DFS BeFS + heuristics

Heuristic functions

Pavel Parízek Model Checking Programs 48

Random walk (search)

Branch coverage

Preferring unexplored paths at branching point

Maximize thread switching

Prioritize selected threads

Prefer most blocked threads

... and many others

Heuristics functions

Pavel Parízek Model Checking Programs 49

Problem: may not give the best/correct answer

Error states usually identified on-the-fly during
state space traversal

Consequences

Dropped state space fragments with errors inside

Misguided search towards error-free state space

 Success not guaranteed !!

Practical issues

Pavel Parízek Model Checking Programs 50

Relaxed memory models (e.g., JMM for Java)

Mapping counterexamples to source code

Efficient management of program states

Operations: storage, state matching, backtracking

Transitions modify a small part of program state

Keep only “diffs” from the previous state on the path

Comparing hash values  possible collisions

Further reading

Pavel Parízek Model Checking Programs 51

C. Baier, J.-P. Katoen, and K.G. Larsen. Principles of
Model Checking. MIT Press, 2008

P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems. LNCS 1032, 1996

C. Flanagan and P. Godefroid. Dynamic Partial Order
Reduction for Model Checking Software. POPL 2005

R. Iosif. Symmetry Reductions for Model Checking of
Concurrent Dynamic Software. STTT, 6(4), 2004

A. Groce and W. Visser. Heuristics for Model Checking
Java Programs. STTT, 6(4), 2004

