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p p, q 

p p, q 

LTL: p  F q 

Structure M Formula f 

Verification task:  M, s ╞ f  ? 
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Goals 

Systematic exploration of all possible behaviors 

Example: all possible interleavings of concurrent threads 

Checking required properties in each state (path) 

 

Model 

Source code (binary)  program state space 

Property 

assertion, deadlock freedom, no data races, ... 



Program state space 
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Directed graph 

States 

Transitions 



States 
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  Q: What does a program state contain ? 



States 
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Local state of each thread 

Program counter (PC) 

Call stack (parameters, local variables, operands) 

 

Global state shared between multiple threads 

Heap objects (field values) and pointers 

Status of each thread (runnable, waiting, ...) 

Thread synchronization primitives (locks) 
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Pavel Parízek Model Checking Programs 7 

     

             Q: What about transitions ? 



Transitions 
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Statements (instructions) 

Updating states (PC, variables) 



Program state space 
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Directed graph 

States 

Transitions 

what else ? 
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Directed graph 

States 

Transitions 

Choices 
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     Q: What types of choices there are ? 



Choices 
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Thread scheduling 

 

Data 

Unknown inputs 



Program state space 
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States 

Transitions 

Choices 

 

PC: 3, i: 0 

PC: 4, i: 1 

PC = PC+1, i++ 

PC: 5, i: 3 PC: 5, i: 2 

PC = PC+1, i = choose-int(2,3) 



Example: producer – consumer 
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public Producer extends Thread { 

  void run() { 

    while (true) { 

      buf.add(++i); 

    } 

  } 

} 

 

public Consumer extends Thread { 

  void run() { 

    while (true) { 

      i = buf.get(0); 

      print(i); 

    } 

  } 

} 

 

public static List buf; 

 

(new Producer(var)).start(); 

(new Consumer(var)).start(); 

P: start 

P: i++ 
P: buf.add(i) 

C: start 

C: start 
P: i++ 
P: buf.add(i) 

P: i++ 
P: buf.add(i) C: i = buf.get(0) 



Terminology 
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Reachable state space 

From the initial program state 

 

Error state 

 

Safety 

Error state is not reachable 

all states 

reachable 
state space 

E 

E 



Properties 
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Categories 

State 

Path 



Properties 
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     Q: Divide properties into categories 

Properties 
no deadlock 
data race 
assertion 
LTL formula 

Category 
state 
path 



Properties 
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Properties 
no deadlock 
assertion 
LTL formula 
data race 

Category 
state 
path 
multiple paths 



State space traversal 
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State space traversal 
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Explicit traversal of the concrete state space 

 

SAT-based traversal of symbolic state space 



Explicit state space traversal 

Pavel Parízek Model Checking Programs 21 

DFS: depth-first search 

From the node corresponding to the initial state 

 

Properties checked in each state 

Error state reached  counterexample 

 

Counterexample (error trace) 

Path in the state space that violates given property 
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INIT 

  visited : = {s0} 

  push(stack, s0) 

  DFS(s0) 

end INIT 

 

DFS(s) 

  for each t in enabled(s) do 

    s’ := t(s) 

    if not P(s’) then 

      counterexample := stack 

      exit 

    if s’ not in visited then 

      visited := visited + {s’} 

      push(stack, s’) 

      DFS(s’) 

      pop(stack) 

  end for 

end DFS() 
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INIT 

  visited : = {s0} 

  push(stack, s0) 

  DFS(s0) 

end INIT 

 

DFS(s) 

  for each t in enabled(s) do 

    s’ := t(s) 

    if not P(s’) then 

      counterexample := stack 

      exit 

    if s’ not in visited then 

      visited := visited + {s’} 

      push(stack, s’) 

      DFS(s’) 

      pop(stack) 

  end for 

end DFS() 
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INIT 

  visited : = {s0} 

  push(stack, s0) 

  DFS(s0) 

end INIT 

 

DFS(s) 

  for each t in enabled(s) do 

    s’ := t(s) 

    if not P(s’) then 

      counterexample := stack 

      exit 

    if s’ not in visited then 

      visited := visited + {s’} 

      push(stack, s’) 

      DFS(s’) 

      pop(stack) 

  end for 

end DFS() 

Executing  

transitions 
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INIT 

  visited : = {s0} 

  push(stack, s0) 

  DFS(s0) 

end INIT 

 

DFS(s) 

  for each t in enabled(s) do 

    s’ := t(s) 

    if not P(s’) then 

      counterexample := stack 

      exit 

    if s’ not in visited then 

      visited := visited + {s’} 

      push(stack, s’) 

      DFS(s’) 

      pop(stack) 

  end for 

end DFS() 

Evaluating 

properties 
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INIT 

  visited : = {s0} 

  push(stack, s0) 

  DFS(s0) 

end INIT 

 

DFS(s) 

  for each t in enabled(s) do 

    s’ := t(s) 

    if not P(s’) then 

      counterexample := stack 

      exit 

    if s’ not in visited then 

      visited := visited + {s’} 

      push(stack, s’) 

      DFS(s’) 

      pop(stack) 

  end for 

end DFS() 
State matching 



State space traversal with DFS – example 
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1 

2 

7 3 

Random rnd = new Random(); 

int i = 2; 

int j = 0; 

 

int c = rnd.nextInt(3); 

 

if (c == 1) 

  j++; 

else if (c == 2) { 

  j = 1; 

  c = 1; 

} 

 

int k = i / j; 

init 

i = 2, j = 0 

i = 2, j = 0 
c = 1 

i = 2 
j = 0 
c = 0 

4 
i = 2, j = 1 
c = 1 

5 

i = 2, j = 1 
c = 1 
k = 1 

8 

6 

i = 2 
j = 0 
c = 2 

Stack: 1,2,6 

Visited states: {1,2,3,4,5,6} 
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1 

2 

7 3 

Random rnd = new Random(); 

int i = 2; 

int j = 0; 

 

int c = rnd.nextInt(3); 

 

if (c == 1) 

  j++; 

else if (c == 2) { 

  j = 1; 

  c = 1; 

} 

 

int k = i / j; 

init 

i = 2, j = 0 

i = 2, j = 0 
c = 1 

i = 2 
j = 0 
c = 0 

4 
i = 2, j = 1 
c = 1 

5 

i = 2, j = 1 
c = 1 
k = 1 

8 

6 

i = 2 
j = 0 
c = 2 

Stack: 1,2,7 

Visited states: {1,2,3,4,5,6,7} division by zero! 
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Limitations 
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Decidability 

For many interesting programs and interesting 
properties, model checking is undecidable 

Example: assertion checking 

Undecidable for multi-threaded programs with procedures 

Decidable for single-threaded boolean programs 
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Possibly infinite state systems 

 

 

   Q: What can make the state space infinite ? 



Limitations 
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Possibly infinite state systems 

Data types with large or infinite domains (int, float) 

Unbounded heap and number of threads 

Unbounded recursion of procedure calls (stack) 

 

 

Remedy: abstraction 

 



Limitations 
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State explosion 

a non-trivial program has too many states 

the state space contains too many choices 

 

State space size exponential with respect to 

Number of threads 

Size of data domains 



State explosion 
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High number of concurrent program threads 

Many instructions executed by each thread 



State explosion 
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Consequences 

Exploring too many choices, states, and transitions 

Storing too many states in memory 

 model checker runs out of memory and time 

 

Model checking of large and complex programs 
is not practically feasible 

... but many research teams are working on this 



State explosion 
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  Q: So what can we do with state explosion ? 

a 

b 

c 

d 

c 

b 

c 

a d 

d 

a 

b 

T1: a ; b 
T2: c ; d 



Partial order reduction 
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Most transitions perform operations local to 
a given thread 

Examples: arithmetic over stack operands (in 
Java), updating local variables 

 

Global operations (statements) 

Field access on a shared heap object 

Thread synchronization (lock, wait) 



Partial order reduction 
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Independent transitions 

Performing only thread-local statements 

All their interleavings give the same result 

a 

b 

c 

d 

c 

b 

c 

a d 

d 

a 

b 

a 

b 

c 

d 



Partial order reduction 
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Independent transitions 

Commutative  any ordering is valid 

Execution of one does not disable others 

 

All the possible interleavings of independent 
transitions from a given state are equivalent 



Partial order reduction 
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Practical approach 
Scheduling choices only at statements that represent 
communication among threads (conflicts) 

 

Communication statement 
may have effects visible to other concurrent threads 

may depend on other threads by reading shared data 

 

Why thread choice 
Let other threads react or modify shared data 



Addressing state explosion 
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Symmetry reductions 

Heuristics 



Symmetry reductions 
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Two states: s1, s2 

State matching: s1 != s2 

Program execution: s1 == s2 

 

Goal: avoid repeated processing of such states 

 

Approach 

Divide state space into equivalence classes 

Explore only canonical representation 



Symmetry reductions 
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Class loading order 

Heap addresses 

 

 

Partial order reduction 



Class loading symmetry 
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Program execution 
Actual position of class data in the static area does 
not influence observable behavior 

Model checkers 
Internal representation of program states 

Class loading order matters in some cases 

 

Solution 
Canonical representation of the static area 

Fixed order of class loading over all state space paths 



Heap symmetry 
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Program execution 
Exact address of a heap object does not influence 
observable behavior 

Model checkers 
Internal representation of program states 

Heap shape and layout matters in some cases 

 

Solution: heap canonicalization 
Canonical addresses of heap objects 

Issues: garbage collection, deallocation 



Heuristics 
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Motto 

“find an error before the model checker runs out 
of memory and time (resources)” 

Better testing: find many errors in reasonable time 

 

Approach 

Focus on state space fragments with errors 

Guide model checker towards possible error states 

Identify and drop error-free parts of the state space 



State space traversal with heuristics 
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INIT 

 visited := {s0} 

 push(stack, s0) 

 DFS(s0) 

end INIT 

 

DFS(s) 

 workSet := enabled(s) 

 for each t in workSet do 

   s’ := t(s) 

   if not P(s’) then 

     counterexample := stack 

     exit 

   if s’ not in visited then 

     visited := visited + {s’} 

     push(stack, s’) 

     DFS(s’) 

     pop(stack) 

 end for 

end DFS() 

INIT 

 visited := {s0} 

 push(stack, s0) 

 BeFS(s0) 

end INIT 

 

BeFS(s) 

 workList := order(enabled(s), h) 

 for each t in workList do 

   s’ := t(s) 

   if not P(s’) then 

     counterexample := stack 

     exit 

   if s’ not in visited then 

     visited := visited + {s’} 

     push(stack, s’) 

     BeFS(s’) 

     pop(stack) 

 end for 

end BeFS() 

“standard” DFS BeFS + heuristics 



Heuristic functions 
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Random walk (search) 

Branch coverage 

Preferring unexplored paths at branching point 

Maximize thread switching 

Prioritize selected threads 

Prefer most blocked threads 

... and many others 



Heuristics functions 
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Problem: may not give the best/correct answer 

Error states usually identified on-the-fly during 
state space traversal 

 

Consequences 

Dropped state space fragments with errors inside 

Misguided search towards error-free state space 

 

                    Success not guaranteed !! 



Practical issues 
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Relaxed memory models (e.g., JMM for Java) 

 

Mapping counterexamples to source code 

 

Efficient management of program states 

Operations: storage, state matching, backtracking 

Transitions modify a small part of program state 

Keep only “diffs” from the previous state on the path 

Comparing hash values  possible collisions 
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