
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Static Analysis: Pointers
& Heap Structures

Pavel Parízek

Pointer analysis

Pavel Parízek Static Analysis: Pointers & Heap Structures 2

Goals
Determine possible targets objects for each
pointer variable

Find possibly aliased program variables of a
reference type (pointers)

Very important for programs that use heap
and objects

Mainstream languages: C, C++, Java, C#, Scala

Aspects: virtual methods (call graphs), aliasing

Example program

Pavel Parízek Static Analysis: Pointers & Heap Structures 3

 1: void main() {
 2: Customer c1 = loadCustomerData(1);
 3: Customer c2 = loadCustomerData(2);
 4: if (c2 == null) c2 = new Customer();
 5: Region r = new Region("Praha");
 6: c1.reg = r;
 7: c2.reg = r;
 8: c1.reg = new Region("Brno");
 9: List<Order> orders = c2.reg.getNewOrders();
10: orders.process();
11: }

12: Customer loadCustomerData(int id) {
13: Customer c = new Customer(id);
14: return c;
15: }

Terminology

Pavel Parízek Static Analysis: Pointers & Heap Structures 4

Abstract heap object
Allocation site (o := new C)

Set of dynamic heap objects

Points-to set
Set pt(p) of abstract heap objects that the pointer
variable p may point to during program execution

Aliased variables

 pt(p) ∩ pt(r) ≠ ∅

Points-to analysis

Pavel Parízek Static Analysis: Pointers & Heap Structures 5

Determines the points-to set pt(p) for each pointer
variable p in a given program

Characteristics

Safe over-approximation
x := y  pt(y) ⊆ pt(x)

Algorithms

Basic: exhaustive subset-based flow-insensitive context-
insensitive (Andersen)
Advanced: flow-sensitive, context-sensitive (few kinds),
demand-driven, strong updates, ...
Trade-offs: scalability versus precision

Example: computing points-to sets

Pavel Parízek Static Analysis: Pointers & Heap Structures 6

 Q1: Find the points-to set for the variable c2.

 Q2: Find all the aliased variables and fields.

Precision

Pavel Parízek Static Analysis: Pointers & Heap Structures 7

May-alias

Two variables may possibly refer to the same heap
object at some point during execution

Must-alias

Two variables must always refer to the same heap
object at a specific program point

Modeling updates

Pavel Parízek Static Analysis: Pointers & Heap Structures 8

Weak update (may-alias)

Given operation on p may or may not be actually
performed on any element of the set pt(p)

Strong update (must-alias)

Operation performed on p and other variables
provably aliased with p at a given point

Computing must-alias information

Pavel Parízek Static Analysis: Pointers & Heap Structures 9

Allocation sites

Fixed partitioning of the heap

Fixed name for a heap object

Access path

Variable name followed by a possibly empty sequence
of field names (dereferences)

Example: p, p.f.g, q.f

Set of access paths

Dynamically changing name for abstract heap object

Tracking access paths

Pavel Parízek Static Analysis: Pointers & Heap Structures 10

Abstract heap object o
Tuple <o, set of access paths>

Processing statements

Current tuple (old): <o, APold>
Object allocation: v = new C

 New tuple: <o, {v}>
Assignment: v = e

 New tuple: <o, APold ∪ { v.ap | e.ap ∊ APold }>
Assignment: v.f = e

 New tuple: <o, APold ∪ { v.f.ap | e.ap ∊ APold }>
Assignment: v = null

 New tuple: <o, APold \ { v.ap | ap ∊ APold }>

Applications

Pavel Parízek Static Analysis: Pointers & Heap Structures 11

Client analyses

Call graph construction

Escape analysis

Scope: method, thread

Verification

Null pointer dereference

Static data race detection

Resource leaks detection

Null pointer dereference (NPA)

Pavel Parízek Static Analysis: Pointers & Heap Structures 12

Option 1: use classic data-flow analysis

Option 2: use results of pointer analysis

NPA: data-flow analysis

Pavel Parízek Static Analysis: Pointers & Heap Structures 13

Analysis domain: list of pointer variables

Facts: variables with possible null value

Transfer functions: assignment (null, ...)

Merge operator: set union (over-approx)

Processing results

For each dereferencing statement check whether
the results say that a given pointer may be null

Statements: field access, method call, array access

NPA: using pointer analysis

Pavel Parízek Static Analysis: Pointers & Heap Structures 14

Input

Results of the may point-to analysis

Specific dereference operation on v

Empty points-to set pt(v)

  possible null value

Call graph construction

Pavel Parízek Static Analysis: Pointers & Heap Structures 15

Goal: for each call site, find the set of possibly
invoked methods

Statement: r = v.m(a1,...,aN)

Approaches
Class Hierarchy Analysis (CHA)

static type (class) of v and all possible subtypes

Using results of pointer analysis
dynamic types of abstract heap objects in pt(v)

Escape analysis

Pavel Parízek Static Analysis: Pointers & Heap Structures 16

Method scope

Goal: identify objects written to heap (v.f = o)

Purpose: local objects may be safely reclaimed

Thread scope

Goal: identify possibly shared heap objects

shared object = reachable from multiple threads

Purpose: eliminating thread choices (POR)

Algorithm: escaping roots, transitive reachability

Static analysis in program verification

Pavel Parízek Static Analysis: Pointers & Heap Structures 17

Constructing abstraction

Intermediate representation

Program slicing

Find and remove statements irrelevant for the
given property

Method summaries

Pavel Parízek Static Analysis: Pointers & Heap Structures 18

Purpose: scalable inter-procedural analysis

Approach

Use available method summary for M

Ignore edges: call - entry, return - exit

Example: side effects analysis

Field accesses on shared heap objects

Parameters escaped inside to the heap

Pointer analysis in WALA

Pavel Parízek Static Analysis: Pointers & Heap Structures 19

Heap graph

Nodes

PointerKey: local variables, fields

InstanceKey: allocation sites

Edges

points-to relation: PointerKey  InstanceKey

Examples

Pavel Parízek Static Analysis: Pointers & Heap Structures 20

Source code

http://d3s.mff.cuni.cz/teaching/program_analysis
_verification/files/pointers-examples.zip

Collecting points-to sets

Thread escape analysis

Identify aliased variables

http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip

Advanced topics

Pavel Parízek Static Analysis: Pointers & Heap Structures 21

Shape analysis

Separation logic

Shape analysis

Pavel Parízek Static Analysis: Pointers & Heap Structures 22

Goal

Determine possible structure (shape) of the heap

Find nodes to which the local variables may point

Information

Sharing between heap structures

Cycles between nodes (pointers)

Unreachable heap nodes (objects)

Applications: garbage collection, detecting errors

Shape analysis: how it works

Pavel Parízek Static Analysis: Pointers & Heap Structures 23

Representation (domain)

Possible shapes of heap data structures for each
program point

Abstraction (summarization)

Summary heap nodes and edges

Loss of precision (length, depth)

Separation logic

Pavel Parízek Static Analysis: Pointers & Heap Structures 24

Goal
Reasoning about low-level programs that use
mutable heap data structures

Extends Hoare logic (triples {P} S {Q})

Logic operator ∗ (“separating conjunction”)
P ∗ Q is true  disjoint heap structures

Supports local reasoning (modularity)

Tools

Pavel Parízek Static Analysis: Pointers & Heap Structures 25

TVLA
http://www.cs.tau.ac.il/~tvla/

Predator

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

SLAyer

http://research.microsoft.com/en-us/projects/slayer/

jStar

https://github.com/seplogic/jstar

http://www.cs.tau.ac.il/~tvla/
http://www.cs.tau.ac.il/~tvla/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://research.microsoft.com/en-us/projects/slayer/
http://research.microsoft.com/en-us/projects/slayer/
http://research.microsoft.com/en-us/projects/slayer/
http://research.microsoft.com/en-us/projects/slayer/
https://github.com/seplogic/jstar
https://github.com/seplogic/jstar

Further reading

Pavel Parízek Static Analysis: Pointers & Heap Structures 26

M. Sridharan, S. Chandra, J. Dolby, S.J. Fink,
and E. Yahav. Alias Analysis for Object-
Oriented Programs. 2013

R. Wilhelm, M. Sagiv, and T. Reps. Shape
Analysis. CC 2000

J.C. Reynolds. Separation Logic: A Logic for
Shared Mutable Data Structures. LICS 2002

