
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Program Analysis and
Code Verification

Pavel Parízek

Language

Pavel Parízek Program Analysis and Code Verification 2

Lectures: English

Labs: English

Homework: Czech/English

Final exam: Czech/English

Questions: Czech/English

Software bugs and errors

Pavel Parízek Program Analysis and Code Verification 3

Race condition

Deadlock

Null pointer dereference

Array index out of bounds

 ...

Firefox crashes

Blue screen of death

 ...

Train accident

Why bugs matter ?

Pavel Parízek Program Analysis and Code Verification 4

Mission- and safety-critical systems

Industry: robots, assembly lines

Transportation: cars, trains, airplanes

Embedded systems

Mobile phones, tablets, household appliances,
consumer electronics

Detecting bugs

Pavel Parízek Program Analysis and Code Verification 5

Software testing is not enough

Pros: scalable, precise, well-established (industry)

Cons: very expensive (people, money), selected
executions, bugs depend on thread interleaving

Program verification

Pros: coverage, multi-threaded programs

Cons: precision, scalability, performance

Tools

Pavel Parízek Program Analysis and Code Verification 6

Java Pathfinder
http://babelfish.arc.nasa.gov/trac/jpf/
Exhaustive state space traversal of Java

CHESS
http://research.microsoft.com/en-us/projects/chess/
Systematic testing of multi-threaded programs in C#

SLAM/SDV
http://research.microsoft.com/en-us/projects/slam/
Software model checking for Windows device drivers

KLEE
http://klee.github.io/
Symbolic execution for low-level C programs (e.g., binutils)

Spec#
http://research.microsoft.com/en-us/projects/specsharp/
Behavior specification language for C# + deductive methods

Code Contracts
http://research.microsoft.com/en-us/projects/contracts/
Behavior specification language for C# + abstract interpretation

Soot and LLVM
http://www.sable.mcgill.ca/soot/, http://llvm.org/
Static analysis for Java and C/C++

Goals of the course

Pavel Parízek Program Analysis and Code Verification 7

Show algorithms and tools for program
analysis, verification, and bug detection

Practical experience with selected tools

Why you should attend

Pavel Parízek Program Analysis and Code Verification 8

Basic knowledge of the main program analysis
and verification techniques

Key aspects: scalability, coverage, automation, ...

Current state of the art

How good or bad the tools are

Program

Pavel Parízek Program Analysis and Code Verification 9

Model checking of programs
Detecting concurrency errors
Symbolic execution
Dynamic analysis
Deductive methods (SAT solvers, SMT solvers)
Bounded model checking
Predicate abstraction and CEGAR
Selected applications of deductive methods in software verification

Verification of program code against contracts

Static analysis and its usage in program verification
Abstract interpretation
Combination of verification techniques
Program termination
Program synthesis

Theoretical limitations

Pavel Parízek Program Analysis and Code Verification 10

Know your enemy !!

Pavel Parízek Program Analysis and Code Verification 11

Know your enemy !!

Pavel Parízek Program Analysis and Code Verification 12

Kurt Gödel

(1906-1978)

Alan Turing

(1912-1954)

Know your enemy !!

Pavel Parízek Program Analysis and Code Verification 13

“Halting problem is undecidable”

Completeness theorem
 T ⊨ f ⇒ T ⊢ f
Incompleteness theorem
 For “interesting” theories T
 ∃f: (T ⊬ f) ∧ (T ⊬ ¬f)

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 14

Completeness theorem (CT)
 T ⊨ f ⇒ T ⊢ f
Incompleteness theorem (IT)
 For “interesting” theories T
 ∃f: (T ⊬ f) ∧ (T ⊬ ¬f)

Claim:
The completeness and
incompleteness theorems
contradict.

1) Let’s take f from IT

2) Any f either holds or not:
(T ⊨ f) ∨ (T ⊨ ¬f)

3) From CT follows:
(T ⊢ f) ∨ (T ⊢ ¬f)

4) Contradiction

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 15

1) Let’s take f from IT

2) Any f either holds or not:
(T ⊨ f) ∨ (T ⊨ ¬f)

3) From CT follows:
(T ⊢ f) ∨ (T ⊢ ¬f)

4) Contradiction

Completeness theorem (CT)
 T ⊨ f ⇒ T ⊢ f
Incompleteness theorem (IT)
 For “interesting” theories T
 ∃f: (T ⊬ f) ∧ (T ⊬ ¬f)

T ⊨ f
 in all models of T, f holds
T ⊨ ¬f
 in all models of T, f doesn’t
 hold
T ⊭ f ∧ T ⊭ ¬f
 there is a model of T
 where f holds and a model
 where f doesn’t hold

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 16

Completeness theorem
 T ⊨ f ⇒ T ⊢ f
Incompleteness theorem
 For “interesting” theories T
 ∃f: (T ⊬ f) ∧ (T ⊬ ¬f)

Claim:
The completeness and
incompleteness theorems
contradict.

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 17

Claim:
Given a program A and input data D, you
can never decide whether A(D) terminates
or not.

“Halting problem is undecidable”

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 18

Claim:
Given a program A and input data D, you
can never decide whether A(D) terminates
or not.

“Halting problem is undecidable”

Sometimes you can. Consider:

void main() {
 printf(“Going to halt right away!\n”);
}

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 19

Claim:
You can never construct a general
algorithm that would for any program A
and any input data D always answer YES if
A(D) terminates.

“Halting problem is undecidable”

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 20

Claim:
You can never construct a general
algorithm that would for any program A
and any input data D always answer YES if
A(D) terminates.

“Halting problem is undecidable”

Yes, you can (but it may not terminate). Consider:

void main(program A, data D) {
 ... simulate A(D) ...
 printf(“YES”);
}

What do they really say ?

Pavel Parízek Program Analysis and Code Verification 21

Claim:
There is no general algorithm that would
always terminate and solve the halting
problem for all programs and all inputs.

“Halting problem is undecidable”

Consequences

Pavel Parízek Program Analysis and Code Verification 22

Program verification (analysis) is undecidable

Example: assertion checking for multi-threaded
programs with procedures

But, in practice, ...

Many interesting properties can be successfully
verified for many interesting programs

Consequences

Pavel Parízek Program Analysis and Code Verification 23

It may take very long

Out of reach of current hardware and user patience

More than the expected age of the known universe

Definitely past the hard deadline of your project

But there is still hope

Full verification is not always necessary

Search for errors (detect some bugs)

Grading

Pavel Parízek Program Analysis and Code Verification 24

Five homeworks
Each will be awarded with 0-20 points
No. 5: presenting research publication

Final exam (voluntary)
Awarded with 0-25 points
Basic principles (algorithms, theory)
Comparing different techniques

Result
85-125 excellent
72-84 very good
60-71 good

Homework assignments

Pavel Parízek Program Analysis and Code Verification 25

Deadlines are strict
We will deduct 10% of your points total for every calendar day
your assignment is late

You have to do homework no. 5 (presentation) and two
other to get “zápočet”

Topics

Java Pathfinder
Implement custom modules and verify given program

Code Contracts
Write specification for given program and then verify it

Static analysis
Finding real bugs
Presentation of research publication

Group homework (2-3 people)

Be active during lectures and labs !!

Pavel Parízek Program Analysis and Code Verification 26

Participate

Answer questions

Think deeply

Contact

Pavel Parízek Program Analysis and Code Verification 27

Web: http://d3s.mff.cuni.cz/teaching/nswi132

Email: parizek@d3s.mff.cuni.cz

Room 202

Office hours
Tue 15:30-17:00

Wed 10:40-12:00

Thu 14:00-17:00

http://d3s.mff.cuni.cz/teaching/nswi132
http://d3s.mff.cuni.cz/teaching/nswi132
http://d3s.mff.cuni.cz/teaching/nswi132

We are hiring

Pavel Parízek Advertisement 28

Master thesis

PhD studies

Theory + Implementation

Program verification, analysis, synthesis

Debugging, tool support for developers

Programming languages, concurrency

Java, C/C++, C#, PHP, JavaScript, Scala

