Static Analysis: Pointers
& Heap Structures

http://d3s.mff.cuni.cz

Distributed and Pavel Parizek
Dependable

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics



Pointer analysis

* Goals

= Determine possible targets objects for each
pointer variable

= Find possibly aliased program variables of a
reference type (pointers)

* Very important for programs that use heap
and objects

= Mainstream languages: C, C++, Java, C#, Scala
= Aspects: virtual methods (call graphs), aliasing

Pavel Parizek Static Analysis: Pointers & Heap Structures 2



Example program

1: void main() {

2: Customer cl1 = loadCustomerData(l);
3: Customer c2 = loadCustomerData(2);
4: if (c2 == null) c2 = new Customer();
5: Region r = new Region("Praha");

6: cl.reg = r;

/: c2.reg = r,

8: cl.reg = new Region("Brno");

9: List<Order> orders = c2.reg.getNewOrders();
10: orders.process();
11: }

12: Customer loadCustomerData(int id) {
13: Customer ¢ = new Customer(id);

14: return c;
15: }

Pavel Parizek Static Analysis: Pointers & Heap Structures 3



Terminology

* Abstract heap object
= Allocation site (0 := new C)
= Set of dynamic heap objects

® Points-to set

= Set pt(p) of abstract heap objects that the pointer
variable p may point to during program execution

* Aliased variables
pt(p) N pt(r) # O

Pavel Parizek Static Analysis: Pointers & Heap Structures 4



Points-to analysis

°* Determines the points-to set pt(p) for each pointer
variable p in a given program

®* Characteristics
= Safe over-approximation
= X :=y = ptly) S pt(x)

* Algorithms

= Basic: exhaustive subset-based flow-insensitive context-
insensitive (Andersen)

= Advanced: flow-sensitive, context-sensitive (few kinds),
demand-driven, strong updates, ...

" Trade-offs: scalability versus precision

Pavel Parizek Static Analysis: Pointers & Heap Structures 5



Example: computing points-to sets

Q1: Find the points-to set for the variable c2.

Q2: Find all the aliased variables and fields.

Pavel Parizek Static Analysis: Pointers & Heap Structures 6



Precision

* May-alias

= Two variables may possibly refer to the same heap
object at some point during execution

® Must-alias

= Two variables must always refer to the same heap
object at a specific program point

Pavel Parizek Static Analysis: Pointers & Heap Structures 7



Modeling updates

°* Weak update (may-alias)

= Given operation on p may or may not be actually
performed on any element of the set pt(p)

* Strong update (must-alias)

= Operation performed on p and other variables
provably aliased with p at a given point

Pavel Parizek Static Analysis: Pointers & Heap Structures 8



Computing must-alias information

* Allocation sites
= Fixed partitioning of the heap
= Fixed name for a heap object

® Access path

= Variable name followed by a possibly empty sequence
of field names (dereferences)

" Example:p,p.f.g,q.f

® Set of access paths
= Dynamically changing name for abstract heap object

Pavel Parizek Static Analysis: Pointers & Heap Structures 9



Tracking access paths

* Abstract heap object o
= Tuple <o, set of access paths>

® Processing statements
= Current tuple (old): <o, AP,,;>
= QObject allocation: v = new C
New tuple: <o, {v}>
= Assignment:v = e
New tuple: <o, AP, U {v.ap | e.ap € AP, }>
= Assignment:v.f = e
New tuple: <o, AP, U {v.f.ap | e.ap € AP_, }>
= Assignment:v = null
New tuple: <o, AP, \{v.ap | ap € AP_, }>

Pavel Parizek Static Analysis: Pointers & Heap Structures 10



Applications

* Client analyses
= Call graph construction

= Escape analysis
® Scope: method, thread

* Verification
= Null pointer dereference
= Static data race detection
= Resource leaks detection

Pavel Parizek Static Analysis: Pointers & Heap Structures 11



Null pointer dereference (NPA)

®* Option 1: use classic data-flow analysis

®* Option 2: use results of pointer analysis

Pavel Parizek Static Analysis: Pointers & Heap Structures 12



NPA: data-flow analysis

* Analysis domain: list of pointer variables
® Facts: variables with possible null value
* Transfer functions: assignment (null, ...)
°* Merge operator: set union (over-approx)

® Processing results

= For each dereferencing statement check whether
the results say that a given pointer may be null

= Statements: field access, method call, array access

avel Parizek Static Analysis: Pointers & Heap Structures 13



NPA: using pointer analysis

* |nput
= Results of the may point-to analysis
= Specific dereference operation on v

°* Empty points-to set pt(v)
=>» possible null value

Pavel Parizek Static Analysis: Pointers & Heap Structures 14



Call graph construction

°* Goal: for each call site, find the set of possibly
invoked methods

° Statement:r = v.m(a;,...,ay)

°* Approaches

= Class Hierarchy Analysis (CHA)
* static type (class) of v and all possible subtypes

= Using results of pointer analysis
* dynamic types of abstract heap objects in pt(v)

Pavel Parizek Static Analysis: Pointers & Heap Structures 15



Escape analysis

* Method scope
= Goal: identify objects written to heap (v.f = 0)
= Purpose: local objects may be safely reclaimed

°* Thread scope

= Goal: identify possibly shared heap objects
* shared object = reachable from multiple threads

= Purpose: eliminating thread choices (POR)
= Algorithm: escaping roots, transitive reachability

Pavel Parizek Static Analysis: Pointers & Heap Structures 16



Static analysis in program verification

s ® 5 © 5 © s
* Constructing abstraction

* Intermediate representation

®* Program slicing

" Find and remove statements irrelevant for the
given property

Pavel Parizek Static Analysis: Pointers & Heap Structures 17



Method summaries

®* Purpose: scalable inter-procedural analysis

°* Approach
= Use available method summary for M
= |gnore edges: call - entry, return - exit

°* Example: side effects analysis
= Field accesses on shared heap objects
= Parameters escaped inside to the heap

Pavel Parizek Static Analysis: Pointers & Heap Structures 18



Pointer analysis in WALA

°* Heap graph

°* Nodes
= PointerKey: local variables, fields
= TnstanceKey: allocation sites

°* Edges

= points-to relation: PointerKey = InstanceKey

avel Parizek Static Analysis: Pointers & Heap Structures 19



Examples

® Source code

= http://d3s.mff.cuni.cz/teaching/program analysis
verification/files/pointers-examples.zip

* Collecting points-to sets
®* Thread escape analysis
* |dentify aliased variables

Pavel Parizek Static Analysis: Pointers & Heap Structures 20


http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip
http://d3s.mff.cuni.cz/teaching/program_analysis_verification/files/wala-examples.zip

Advanced topics

® Shape analysis

® Separation logic

Pavel Parizek Static Analysis: Pointers & Heap Structures 21



Shape analysis

* Goal
= Determine possible structure (shape) of the heap
= Find nodes to which the local variables may point

* |nformation
= Sharing between heap structures
= Cycles between nodes (pointers)
= Unreachable heap nodes (objects)

* Applications: garbage collection, detecting errors

Pavel Parizek Static Analysis: Pointers & Heap Structures 22



Shape analysis: how it works

°* Representation (domain)

= Possible shapes of heap data structures for each
program point

* Abstraction (summarization)
= Summary heap nodes and edges
= Loss of precision (length, depth)

Pavel Parizek Static Analysis: Pointers & Heap Structures 23



Separation logic

* Goal

= Reasoning about low-level programs that use
mutable heap data structures

°* Extends Hoare logic (triples {P} S {Q})

° Logic operator * (“separating conjunction”)
= P % Qistrue =» disjoint heap structures

* Supports local reasoning (modularity)

Pavel Parizek Static Analysis: Pointers & Heap Structures 24



Tools

° TVLA

= http://www.cs.tau.ac.il/~tvla/

® Predator
= http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

®* SLAyer

= http://research.microsoft.com/en-us/projects/slayer/

® jStar
= https://github.com/seplogic/jstar

Pavel Parizek Static Analysis: Pointers & Heap Structures 25


http://www.cs.tau.ac.il/~tvla/
http://www.cs.tau.ac.il/~tvla/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://research.microsoft.com/en-us/projects/slayer/
http://research.microsoft.com/en-us/projects/slayer/
http://research.microsoft.com/en-us/projects/slayer/
http://research.microsoft.com/en-us/projects/slayer/
https://github.com/seplogic/jstar
https://github.com/seplogic/jstar

Further reading

* M. Sridharan, S. Chandra, J. Dolby, S.J. Fink,
and E. Yahav. Alias Analysis for Object-
Oriented Programs. 2013

* R. Wilhelm, M. Sagiv, and T. Reps. Shape
Analysis. CC 2000

* J.C. Reynolds. Separation Logic: A Logic for
Shared Mutable Data Structures. LICS 2002

Pavel Parizek Static Analysis: Pointers & Heap Structures 26



