
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Concurrency Errors

Pavel Parízek

Basic taxonomy of concurrency bugs

Pavel Parízek Concurrency Errors 2

Data race condition (unsynchronized access)

Deadlock caused by incorrectly nested locking

Deadlock caused by missed notification (early)

Atomicity violation (inconsistent data values)

Ordering violation (method calls in two threads)

Spurious wake-up (forgotten condition check)

Data race condition

Pavel Parízek Concurrency Errors 3

Producer.run() {

 while (true) {

 synchronized (buf) {

 buf.add(...);

 }

 count++;

 }

}

Consumer.run() {

 while (true) {

 if (count > 0) {

 synchronized (buf) {

 ... = buf.get(0);

 }

 }

 --count;

 }

}

public static List buf;

main() {

 (new Producer()).start();

 (new Consumer()).start();

}

Deadlock caused by incorrectly nested locks

Pavel Parízek Concurrency Errors 4

Producer.run() {

 while (true) {

 synchronized (coord) {

 synchronized (buf) {

 buf.add(...);

 }

 count++;

 }

 }

}

Consumer.run() {

 while (true) {

 synchronized (buf) {

 synchronized (coord) {

 ... = buf.get(0);

 }

 --count;

 }

 }

}

public static List buf;

main() {

 (new Producer()).start();

 (new Consumer()).start();

}

Deadlock caused by missed notification

Pavel Parízek Concurrency Errors 5

Subject.run() {

 ...

 synchronized (events) {

 events.add(...);

 events.notify();

 }

 ...

}

Observer.run() {

 ...

 synchronized (events) {

 events.wait();

 ... = events.get(0);

 }

 ...

}

public static List events = ...

main() {

 (new Subject()).start();

 (new Observer()).start();

}

Atomicity violation

Pavel Parízek Concurrency Errors 6

Reader.run() {

 ...

 synchronized (db) {

 x = db.value1;

 }

 synchronized (db) {

 y = db.value2;

 }

 ...

}

Writer.run() {

 ...

 synchronized (db) {

 db.value1 = 10;

 db.value2 = 20;

 }

 ...

}

Database db = ...

main() {

 (new Reader(db)).start();

 (new Writer(db)).start();

}

Ordering violation

Pavel Parízek Concurrency Errors 7

Server.run() {

 ...

 startInit();

 for (Worker w : workers) {

 w.start();

 }

 finishInit();

 ...

}

Worker.run() {

 while (true) {

 waitForRequest();

 openDatabase();

 executeDBQuery();

 processResults();

 sendResponse();

 }

}

Spurious wake-up

Pavel Parízek Concurrency Errors 8

Producer.run() {

 synchronized (buf) {

 while (count >= MAX) {

 buf.wait();

 }

 buf.add(...);

 count++;

 buf.notify();

 }

}

Consumer.run() {

 synchronized (buf) {

 if (count == 0) {

 buf.wait();

 }

 ... = buf.get(0);

 --count;

 buf.notify();

 }

}

public static List buf;

main() {

 (new Producer()).start();

 (new Consumer()).start();

 (new Consumer()).start();

}

Detecting concurrency bugs

Pavel Parízek Concurrency Errors 9

Detecting concurrency bugs

Pavel Parízek Concurrency Errors 10

Basic approach
Exhaustive state space traversal with non-deterministic
thread choices by a model checker (JPF)

Selected variants of state space traversal
Using custom runtime to control thread scheduling and
synchronization operations
Bounding the number of thread preemptions
Optimizations (e.g., preemption sealing)

Other approaches
Computing the lock-set analysis
Happens-before relation (order)

Exhaustive state space traversal with thread choices (JPF)

Pavel Parízek Concurrency Errors 11

Single root node

Initial program state

Thread choices

State matching

Backtracking

T1

T2 T1

T1

Using custom runtime

Pavel Parízek Concurrency Errors 12

Controls thread scheduler in the operating system

Custom library for synchronization primitives

source code instrumentation, dynamic linking

Tracking execution of statements accessing the
global state (heap objects, locks)

source code instrumentation, dynamic monitoring

 Q: is there any problem with this approach ?

Executing program with different schedules

Pavel Parízek Concurrency Errors 13

Restart program execution many times

Each time with a different thread interleaving

Keep track of explored thread schedules

Stateless traversal

no set of visited states, no state matching

Bounded number of preemptions

Pavel Parízek Concurrency Errors 14

Motivation: errors triggered with few thread
preemptions (2-5) and few threads (2)

Limit the number of thread preemptions

Systematic exploration within the given bound

Common alternative name: context bounding

 Q: can we do even better (improve coverage) ?

Bounded number of preemptions

Pavel Parízek Concurrency Errors 15

Motivation: errors triggered with few thread
context switches (2-5) and few threads (2)

Limit the number of thread preemptions

Systematic exploration within the given bound

Common alternative name: context bounding

 A: iteratively increasing the context bound

Bounded number of preemptions

Pavel Parízek Concurrency Errors 16

Method limitations

Ignores concurrency errors triggered by more
context switches (preemptions)

Checks program behavior only for a single input

Remedy: symbolic execution

Theoretical complexity: NP-complete

Preemption sealing

Pavel Parízek Concurrency Errors 17

Disable thread choices in

System libraries (e.g., core and collections)

Already explored state space fragments

Method tested during previous runs of the checker

Code triggering already known concurrency bugs

CHESS: Systematic Concurrency Testing

Pavel Parízek Concurrency Errors 18

Main features
Custom runtime with scheduler
Stateless traversal with fairness
Iterative context-bounding

Supported platforms
C#, C/C++, Win32, .NET

Further information & source code

http://research.microsoft.com/en-us/projects/chess/
http://chesstool.codeplex.com/

http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://research.microsoft.com/en-us/projects/chess/
http://chesstool.codeplex.com/

Context bounding done another way

Pavel Parízek Concurrency Errors 19

Transforming concurrent programs to
sequential programs

Approach: source-to-source translation

 Q: how this can be done ?

Context bounding done another way

Pavel Parízek Concurrency Errors 20

Transforming concurrent programs to sequential
programs

Approach: source-to-source translation

Model checking the sequential program

Thread preemption
non-deterministic data choice

jump to another code location

set up execution context (stack)

Program state: cross-product of local variables of
all threads and global variables

Lock-set analysis

Pavel Parízek Concurrency Errors 21

Find the set of locks held at each access to a
shared global variable

Check whether accesses to shared variables
follow a consistent locking discipline

Two concurrent accesses to a global variable
Empty intersection of lock sets data race

Every access to a shared variable protected by
the same lock

Thread using a different lock than before data race

Happens-before ordering (relation)

Pavel Parízek Concurrency Errors 22

Relationships between synchronization events

causal, temporal, execution flow

Partial happens-before ordering

Example 1: wait – notify

Example 2: lock release – lock acquire

Ordering between field accesses no data race

Defining correctness of concurrent programs

Pavel Parízek Concurrency Errors 23

Correctness conditions

Pavel Parízek Concurrency Errors 24

Example: LinkedList

Operations: add(o), get(i), remove(i), size()

Data race freedom

Serializability (atomicity)

No overlap between concurrent actions

Linearizability

Linearizability

Pavel Parízek Concurrency Errors 25

Concurrent history H
Operation: invoke, result

Partial order: e1 <H e2 if res(e1) precedes inv(e2)

Linearizable concurrent history H
Exists serial witness that respects partial order and
every operation has the same result value as in H

Set of concurrent operations
Every possible concurrent history is linearizable with
respect to a sequential specification

Verifying linearizability

Pavel Parízek Concurrency Errors 26

Linearization points

Operations must appear to take their effect at
some instant between the call and return

State space traversal

Phase 1: find all possible sequential histories

Phase 2: explore concurrent histories

Identify corresponding serial witness for each

More complicated algorithmic techniques

Relaxed memory models

Pavel Parízek Concurrency Errors 27

Relaxed memory models

Pavel Parízek Concurrency Errors 28

Defines valid program transformations

System: compiler, virtual machine, hardware

Motivation: optimizing performance

Possible transformations

Reordering write accesses to a shared variable in a
given thread

Delaying propagation of the new value of a global
variable to other threads (shared memory)

Relaxed memory models

Pavel Parízek Concurrency Errors 29

Sequential consistency

Data race free models

Case study: Java Memory Model

Sequential consistency

Pavel Parízek Concurrency Errors 30

Memory accesses execute one at a given time

Total order of memory accesses (read, write)

Reads observe the most recent written value

Each thread must respect the program order

Order defined by the source code (developer)

Java Memory Model

Pavel Parízek Concurrency Errors 31

Data race free programs behave correctly
Guaranteed sequentially consistent semantics

Program with data races up to the developer
Model provides only weak guarantees

Memory barriers
Boundaries of synchronized blocks
Accessing volatile variables

Defined formally using the happens-before ordering

Very complex (many rules): lot of research papers about it

Used since J2SE 5.0

Hardware memory models

Pavel Parízek Detecting Concurrency Errors 32

Total Store Order (TSO)
Delaying writes (stores) relative to subsequent reads
(loads) on the same processor
CPU architecture: x86

Partial Store Order (PSO)
Additionally, delaying stores relative to other stores (to
different memory locations) on the same processor

Partial Store Load Order (PSLO)
Additionally, permits reordering loads to execute before
previous loads and stores on the same processor

Relaxed memory models: verification support

Pavel Parízek Concurrency Errors 33

Java PathRelaxer

CHESS: limited

Some tools for checking program behavior on
hardware memory models (especially TSO)

Data races

Pavel Parízek Concurrency Errors 34

Benign

Optimizing performance on multi-core CPUs

Exploiting properties of the memory model

Very hard to get the implementation right

Case study: java.util.concurrent

Erroneous

Missing thread synchronization by a developer mistake

Some people call for a “total ban” on data races

ABA problem

Pavel Parízek Detecting Concurrency Errors 35

 Q: can you tell me what it means ?

ABA problem

Pavel Parízek Detecting Concurrency Errors 36

Idea: same value but something changed

Typical for lock-free data structures

Further reading

Pavel Parízek Detecting Concurrency Errors 37

M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic
Testing of Multithreaded Programs. PLDI 2007

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and I. Neamtiu.
Finding and Reproducing Heisenbugs in Concurrent Programs. OSDI 2008

S. Qadeer and D. Wu. KISS: Keep it Simple and Sequential. PLDI 2004

N. Ghafari, A. Hu, and Z. Rakamaric. Context-Bounded Translations for
Concurrent Software: An Empirical Evaluation. SPIN 2010

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM
Transactions on Computer Systems, 15(4), 1997

S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-Up: A Complete
and Automatic Linearizability Checker. PLDI 2010

J. Manson, W. Pugh, and S.V. Adve. The Java Memory Model. POPL 2005

