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Model checking SW and HW
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Goals

Systematic exploration of all possible behaviors

Example: all possible interleavings of concurrent threads

Checking required properties in each state (path)

Model

Source code (binary)  program state space

Property

assertion, deadlock freedom, no data races, ...



Program state space
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Directed graph

States

Transitions



States
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Q: What does a program state contain ?



States
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Local state of each thread

Program counter (PC)

Call stack (parameters, local variables, operands)

Global state shared between multiple threads

Heap objects (field values) and pointers

Status of each thread (runnable, waiting, ...)

Thread synchronization primitives (locks)



Transitions
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Q: What about transitions ?



Transitions
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Statements (instructions)

Updating states (PC, variables)



Program state space
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Directed graph

States

Transitions

what else ?



Program state space
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Directed graph

States

Transitions

Choices



Choices
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Q: What types of choices there are ?



Choices
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Thread scheduling

Data

Unknown inputs



Program state space
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States

Transitions

Choices

PC: 3, i: 0

PC: 4, i: 1

PC = PC+1, i++

PC: 5, i: 3PC: 5, i: 2

PC = PC+1, i = choose-int(2,3)



Example: producer – consumer
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public Producer extends Thread {

void run() {

while (true) {

buf.add(++i);

}

}

}

public Consumer extends Thread {

void run() {

while (true) {

i = buf.get(0);

print(i);

}

}

}

public static List buf;

(new Producer(var)).start();

(new Consumer(var)).start();

P: start

P: i++
P: buf.add(i)

C: start

C: start
P: i++
P: buf.add(i)

P: i++
P: buf.add(i) C: i = buf.get(0)



Terminology
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Reachable state space

From the initial program state

Error state

Safety

Error state is not reachable

all states

reachable
state space

E

E



Properties
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Categories

State

Path



Properties
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Q: Divide properties into categories

Properties
no deadlock
data race
assertion
LTL formula

Category
state
path



Properties
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Properties
no deadlock
assertion
LTL formula
data race

Category
state
path
multiple paths



State space traversal
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State space traversal
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Explicit traversal of the concrete state space

SAT-based traversal of symbolic state space



Explicit state space traversal
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DFS: depth-first search

From the node corresponding to the initial state

Properties checked in each state

Error state reached  counterexample

Counterexample (error trace)

Path in the state space that violates given property



Explicit state space traversal with DFS
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INIT

visited : = {s0}

push(stack, s0)

DFS(s0)

end INIT

DFS(s)

for each t in enabled(s) do

s’ := t(s)

if not P(s’) then

counterexample := stack

exit

if s’ not in visited then

visited := visited + {s’}

push(stack, s’)

DFS(s’)

pop(stack)

end for

end DFS()



Explicit state space traversal with DFS
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INIT

visited : = {s0}

push(stack, s0)

DFS(s0)

end INIT

DFS(s)

for each t in enabled(s) do

s’ := t(s)

if not P(s’) then

counterexample := stack

exit

if s’ not in visited then

visited := visited + {s’}

push(stack, s’)

DFS(s’)

pop(stack)

end for

end DFS()



Explicit state space traversal with DFS

Pavel Parízek Model Checking Programs 24

INIT

visited : = {s0}

push(stack, s0)

DFS(s0)

end INIT

DFS(s)

for each t in enabled(s) do

s’ := t(s)

if not P(s’) then

counterexample := stack

exit

if s’ not in visited then

visited := visited + {s’}

push(stack, s’)

DFS(s’)

pop(stack)

end for

end DFS()

Executing 

transitions



Explicit state space traversal with DFS
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INIT

visited : = {s0}

push(stack, s0)

DFS(s0)

end INIT

DFS(s)

for each t in enabled(s) do

s’ := t(s)

if not P(s’) then

counterexample := stack

exit

if s’ not in visited then

visited := visited + {s’}

push(stack, s’)

DFS(s’)

pop(stack)

end for

end DFS()

Evaluating

properties



Explicit state space traversal with DFS
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INIT

visited : = {s0}

push(stack, s0)

DFS(s0)

end INIT

DFS(s)

for each t in enabled(s) do

s’ := t(s)

if not P(s’) then

counterexample := stack

exit

if s’ not in visited then

visited := visited + {s’}

push(stack, s’)

DFS(s’)

pop(stack)

end for

end DFS()
State matching



State space traversal with DFS – example
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1

2

73

Random rnd = new Random();

int i = 2;

int j = 0;

int c = rnd.nextInt(3);

if (c == 1)

j++;

else if (c == 2) {

j = 1;

c = 1;

}

int k = i / j;

init

i = 2, j = 0

i = 2, j = 0
c = 1

i = 2
j = 0
c = 0

4
i = 2, j = 1
c = 1

5

i = 2, j = 1
c = 1
k = 1

8

6

i = 2
j = 0
c = 2

Stack: 1,2,6

Visited states: {1,2,3,4,5,6}



State space traversal with DFS – example
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1

2

73

Random rnd = new Random();

int i = 2;

int j = 0;

int c = rnd.nextInt(3);

if (c == 1)

j++;

else if (c == 2) {

j = 1;

c = 1;

}

int k = i / j;

init

i = 2, j = 0

i = 2, j = 0
c = 1

i = 2
j = 0
c = 0

4
i = 2, j = 1
c = 1

5

i = 2, j = 1
c = 1
k = 1

8

6

i = 2
j = 0
c = 2

Stack: 1,2,7

Visited states: {1,2,3,4,5,6,7} division by zero!



Model checking programs: limitations
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Limitations
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Decidability

For many interesting programs and interesting 
properties, model checking is undecidable

Example: assertion checking

Undecidable for multi-threaded programs with procedures

Decidable for single-threaded boolean programs



Limitations
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Possibly infinite state systems

Q: What can make the state space infinite ?



Limitations
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Possibly infinite state systems

Data types with large or infinite domains (int, float)

Unbounded heap and number of threads

Unbounded recursion of procedure calls (stack)

Remedy: abstraction



Limitations
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State explosion

a non-trivial program has too many states

the state space contains too many choices

State space size exponential with respect to

Number of threads

Size of data domains



State explosion
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High number of concurrent program threads

Many instructions executed by each thread



State explosion
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Consequences

Exploring too many choices, states, and transitions

Storing too many states in memory

model checker runs out of memory and time

Model checking of large and complex programs 
is not practically feasible

... but many research teams are working on this



State explosion
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Q: So what can we do with state explosion ?

a

b

c

d

c

b

c

a d

d

a

b

T1: a ; b
T2: c ; d



Partial order reduction
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Most transitions perform operations local to 
a given thread

Examples: arithmetic over stack operands (in 
Java), updating local variables

Global operations (statements)

Field access on a shared heap object

Thread synchronization (lock, wait)



Partial order reduction
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Independent transitions

Performing only thread-local statements

All their interleavings give the same result

a

b

c

d

c

b

c

a d

d

a

b

a

b

c

d



Partial order reduction
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Independent transitions

Commutative  any ordering is valid

Execution of one does not disable others

All the possible interleavings of independent 
transitions from a given state are equivalent



Partial order reduction
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Practical approach
Scheduling choices only at statements that represent 
communication among threads (conflicts)

Communication statement
may have effects visible to other concurrent threads

may depend on other threads by reading shared data

Why thread choice
Let other threads react or modify shared data



Addressing state explosion
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Symmetry reductions

Heuristics



Symmetry reductions
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Two states: s1, s2

State matching: s1 != s2

Program execution: s1 == s2

Goal: avoid repeated processing of such states

Approach

Divide state space into equivalence classes

Explore only canonical representation



Symmetry reductions
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Class loading order

Heap addresses

Partial order reduction



Class loading symmetry
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Program execution
Actual position of class data in the static area does 
not influence observable behavior

Model checkers
Internal representation of program states

Class loading order matters in some cases

Solution
Canonical representation of the static area

Fixed order of class loading over all state space paths



Heap symmetry
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Program execution
Exact address of a heap object does not influence 
observable behavior

Model checkers
Internal representation of program states

Heap shape and layout matters in some cases

Solution: heap canonicalization
Canonical addresses of heap objects

Issues: garbage collection, deallocation



Heuristics
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Motto

“find an error before the model checker runs out 
of memory and time (resources)”

Better testing: find many errors in reasonable time

Approach

Focus on state space fragments with errors

Guide model checker towards possible error states

Identify and drop error-free parts of the state space



State space traversal with heuristics
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INIT

visited := {s0}

push(stack, s0)

DFS(s0)

end INIT

DFS(s)

workSet := enabled(s)

for each t in workSet do

s’ := t(s)

if not P(s’) then

counterexample := stack

exit

if s’ not in visited then

visited := visited + {s’}

push(stack, s’)

DFS(s’)

pop(stack)

end for

end DFS()

INIT

visited := {s0}

push(stack, s0)

BeFS(s0)

end INIT

BeFS(s)

workList := order(enabled(s), h)

for each t in workList do

s’ := t(s)

if not P(s’) then

counterexample := stack

exit

if s’ not in visited then

visited := visited + {s’}

push(stack, s’)

BeFS(s’)

pop(stack)

end for

end BeFS()

“standard” DFS BeFS + heuristics



Heuristic functions
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Random walk (search)

Branch coverage

Preferring unexplored paths at branching point

Maximize thread switching

Prioritize selected threads

Prefer most blocked threads

... and many others



Heuristics functions
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Problem: may not give the best/correct answer

Error states usually identified on-the-fly during 
state space traversal

Consequences

Dropped state space fragments with errors inside

Misguided search towards error-free state space

Success not guaranteed !!



Practical issues
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Relaxed memory models (e.g., JMM for Java)

Mapping counterexamples to source code

Efficient management of program states

Operations: storage, state matching, backtracking

Transitions modify a small part of program state

Keep only “diffs” from the previous state on the path

Comparing hash values  possible collisions
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