Deductive Methods, Bounded Model Checking

http://d3s.mff.cuni.cz

Department of Distributed and Dependable Systems

Pavel Parízek

CHARLES UNIVERSITY IN PRAGUE
faculty of mathematics and physics
Deductive methods
If you want to know more ...

- Decision Procedures and Verification (NAIL094)
 - Lecturer: Martin Blicha, D3S
 - http://d3s.mff.cuni.cz/teaching/decision_procedures/

Basic terminology (reminder)

- Logic formula
 - syntax, semantics

- Propositional logic

- First-order logic
 - Predicates
 - Quantifiers

- Assignment
 - Partial assignment

- Satisfiability

- Validity (tautology)
Relation between satisfiability and validity

φ is valid \rightarrow φ is satisfiable

φ is valid \iff !φ is unsatisfiable

φ is satisfiable \iff !φ is not valid
Normal forms

- Negation normal form (NNF)
 - syntax: !, |, & and variables
 - Negation only for variables
 - Example: \((a \mid (b \& \neg c)) \& (\neg d)\)

- Conjunctive normal form (CNF)
 - NNF as a conjunction of disjunctions
 - Example: \((a \mid b \mid \neg c) \& (\neg d) \& (e \mid \neg f)\)

- Disjunctive normal form (DNF)
 - NNF as a disjunction of conjunctions
 - Example: \((a \& b \& \neg c) \mid (\neg d) \mid (e \& \neg f)\)
Getting the normal forms

- De Morgan’s law
- Distributive law

Q: Is there a problem with conversion?
Getting the normal forms

- Transformation into an equivalent formula in CNF or DNF

- Problem: exponential blow-up of the size

- Remedy: creating *equisatisfiable* formula
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

ϕ: $!(a \rightarrow b)$
ψ: $a \& \!b$

ϕ: $a \mid b$
ψ: $(a \mid n) \& (\!n \mid b)$

ϕ: $a \& b \& \!c$
ψ: true

ϕ: $!a \leftrightarrow b$
ψ: false
Equisatisfiability

- Equisatisfiable formulas ϕ, ψ
 - both satisfiable or both unsatisfiable

Examples

- ϕ: !(a \rightarrow b) ψ: a $\&$!b \quadEQ, ES
- ϕ: a $|$ b ψ: (a $|$ n) $\&$ (!n $|$ b) \quadES
- ϕ: a $\&$ b $\&$!c ψ: true \quadES
- ϕ: !a \leftrightarrow b ψ: false \quad$-$
• Tseitin’s encoding
 - Widely used algorithm for transforming a given propositional formula ϕ into an equisatisfiable formula ϕ' in CNF with linear growth only

• Practice: various optimizations applied
SAT solving
SAT solving

• Goal
 ▪ Decide whether a given propositional formula ϕ in CNF is satisfiable

• Possible answers
 ▪ Satisfiable + assignment (values, model)
 ▪ Unsatisfiable + core (subset of clauses)

• Satisfiable formula $\phi \iff$ there exists a partial assignment satisfying all clauses in ϕ
NAIVE brute force solution

- Trying all possible assignments
 - Systematic traversal of a binary tree

DPLL (Davis-Putnam-Loveland-Logemann)

- Motivation: partial assignment can imply values of other variables in the given formula
- Example: from $(\neg a \lor b)$, $v = \{ a \rightarrow 1 \}$ we get $\{ b \rightarrow 1 \}$
- Approach: iterative deduction
 - Inferring value of a particular variable
- Basic algorithm used in modern SAT solvers (with many additional optimizations) \Rightarrow DPLL-based SAT solving
SAT solving: optimizations

- Adding learned clauses (implied)
- Non-chronological backtracking
- Choice of the branching variable
 - Various heuristics on the best choice exist

- Restarts
 - When it takes too long, restart the solver and use other “seeds” for heuristic functions
SAT solving

- Problem size: 10K – 1M variables
 - Typical input formulas have structure
- Worse for random instances
- Hard instances exist (of course)
- Tools are getting better all the time
 - Reason: industry demand, annual competitions
 - http://www.satcompetition.org/

- Other approaches
 - Stochastic search (random walk)
 - Quickly finds solution for satisfiable instances
 - Ordered binary decision diagrams
Propositional logic: semantic X proof

- Semantic domain \models
 - Goal: find satisfying assignment for φ

- We know that: $\models \varphi \iff \vdash \varphi$

- Proof domain \vdash
 - Goal: derive the proof
 - axioms, inference rules
Resolution

- Input: CNF formula ϕ (a set of clauses)

- Goal: derive empty clause ($false$)

- Iterative process
 - Choose two suitable clauses from the set
 - Requirement: they must have complementary literals $r, \neg r$
 - Apply resolution step on these clauses
 $$(p_1 \lor \ldots \lor p_N \lor r), (q_1 \lor \ldots \lor q_N \lor \neg r) \Rightarrow (p_1 \lor \ldots \lor p_N \lor q_1 \lor \ldots \lor q_N)$$
 - Add the newly derived clause into the set
 - Repeat until we derive $false$ (or fail/stop)
Resolution

• Equivalent statements
 1) CNF formula ϕ is unsatisfiable
 2) We can derive empty clause using resolution on the clauses from ϕ

• Resolution used in practice
 ▪ Checking validity of a first-order logic formula
 ▪ Proof-by-contradiction
 ▪ Add negation of the conjecture into the set
SAT solving and propositional logic

- SAT looks very good, but we need more
 - For program verification, full theorem proving, ...

- First-order logic (predicate logic)
- Interesting theories
 - Linear integer arithmetic (\mathbb{N}, \mathbb{Z})
 - Data structures (arrays, bit vectors)
Decision procedure
Decision procedure

- Algorithm that
 - Always terminates
 - Outputs: YES/NO

- Decision procedure for a particular theory T
 - Always terminates and provides a correct answer for every formula of T
 - Goal: checking validity of logic formulas
Interesting theories

- Equality logic
 - With uninterpreted functions
- Linear arithmetic
 - Integer
 - Rational
- Difference logic
- Arrays
- Bit vectors
Equality logic

- Syntax
 - Atomic formulas
 \[term = term \mid true \mid false \]
 - Terms
 \[variable \mid constant \]

- Deciding validity of an equality logic formula is NP-complete problem
- Polynomial algorithm exists for the conjunctive fragment (uses only \& and \(\exists \))
Equality logic with uninterpreted functions

• Syntax
 ▪ Atomic formulas
 \[\text{term} = \text{term} \mid \text{predicate}(\text{term}, \ldots, \text{term}) \mid \text{true} \mid \text{false} \]
 ▪ Terms
 \[\text{variable} \mid \text{constant} \mid \text{function}(\text{term}, \ldots, \text{term}) \]

• Semantics
 ▪ No implicit meaning of functions and predicates
 ▪ \[a_1 = b_1 \land \ldots \land a_N = b_N \rightarrow f(a_1, \ldots, a_N) = f(b_1, \ldots, b_N) \]

• Decision procedure
 ▪ Transform into an equisatisfiable formula in equality logic
Equality logic with uninterpreted functions

- **Purpose:** abstraction
 - Full formula \Rightarrow function semantics defined using axioms
 - Uninterpreted symbols \Rightarrow just equality between arguments
 - $\models \phi^\text{EUF} \rightarrow \models \phi$

- **False answers possible**
 - Example: $add(1,2) \neq add(2,1)$ in EUF

- Formula with UF easier to decide than the “full” formula
Linear arithmetic

- **Syntax**
 - Atomic formulas

 \[
 \text{term} = \text{term} \mid \text{term} < \text{term} \mid \text{term} \leq \text{term} \mid \text{true} \mid \text{false}
 \]
 - Terms

 \[
 \text{variable} \mid \text{constant} \mid \text{constant variable} \mid \text{term} + \text{term}
 \]

- **Example:** \((3x + 2y \leq 5z) \land (2x - 2y = 0)\)

- **Arithmetic without multiplication** → Presburger arithmetic

- **Decision procedure**
 - General case (full theory): \(2^{2\Omega(n)}\)
 - Conjunctive fragment over \(\mathbb{Q}\)
 - Linear programming: Simplex method (EXP), Ellipsoid method (P)
 - Conjunctive fragment over \(\mathbb{Z}\)
 - Integer linear programming (NP-complete)
Difference logic

• Syntax
 - Atomic formulas
 \[\text{variable} - \text{variable} < \text{constant} \mid \]
 \[\text{variable} - \text{variable} \leq \text{constant} \mid \]
 \[\text{true} \mid \text{false} \]
 - Operators: \(!, \&, \leftarrow, \leftrightarrow\)

• Example: \((x - y < 3) \land (y - z \leq -4) \land (z - x \leq 1)\)

• Decision procedure
 - Conjunctive fragment polynomial for \(\mathbb{Q}\) and \(\mathbb{Z}\)
Data structures

- Array theory
 - Function symbols
 - \texttt{select}(a,i) \quad // \text{read, } a[i]
 - \texttt{store}(a,i,e) \quad // \text{update, } a[i] = e
 - Axiom \textbf{read-over-write}
 - \texttt{select}(\texttt{store}(a,i,e),i) = e

- Bit vectors
 - Motivation: precise computer arithmetic (overflows, ...)
 - Reasoning about individual bits in a finite vector (array)
 - Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
 - Decision procedure
 - Typically flattened into a large instance of SAT
 - Many clever optimizations (encoding)
Combining theories

- Goal
 - Formulas that combine multiple theories
 - Example: linear arithmetic + arrays

- Decision procedures
 - Combined under specific constraints

- Nelson-Oppen method
Decision procedures: summary

- Decision procedures
 - Typically work for conjunctive fragments of the respective theories

- But we still need more
 - Formulas with arbitrary boolean structure and interesting theories (linear arithmetic, arrays)
Goal

- Decide satisfiability of a quantifier-free formula that involves constructs of specific theories

Idea

- Using combination of a SAT solver and a decision procedure (DP) for a conjunctive fragment of the respective theory
Naive use of a SAT solver

1. Extract boolean skeleton of the given formula ϕ
2. Run the SAT solver on the boolean skeleton
 a) unsatisfiable \Rightarrow the input formula is unsatisfiable
 b) satisfiable \Rightarrow we get a satisfying assignment ν
3. Run the DP on the formula derived from the satisfying assignment ν
 a) satisfiable \Rightarrow the input formula is satisfiable
 b) unsatisfiable \Rightarrow add the blocking clause for ν to the boolean skeleton and continue with the step 2
Approaches to SMT

- **DPLL(T)-based SMT solving**
 - Eagerness: DPLL asks DP for partial assignments during traversal
 - Benefit: earlier conflict discovery
 - Updating the set of clauses given to DP on-the-fly
 - iteration (add), backtracking (remove)
- **Theory-based learning**
 - DP can identify clauses valid/invalid in the given theory T
Available SMT solvers
- Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...

SMT-LIB v2
- Defines common input format
- Big library of SMT problems
- http://www.smt-lib.org/

SMT-COMP
- Competition of SMT solvers
- http://smtcomp.org
SMT solving in practice

• Current state
 ▫ Good performance
 ▫ Highly automated
 ▫ Many applications

• Drawbacks
 ▫ Restricted to specific theories and domains (\mathbb{Q}, \mathbb{Z})
 ▫ Very limited support for quantifiers (mostly \exists)
 ▫ Much less powerful than full theorem proving
Theorem proving

- **Input**
 - Theory T: set of axioms
 - General formula ϕ in predicate logic

- **Goal**
 - Decide validity of the formula ϕ in T
 - Semantic domain: show unsatisfiable negation
 - Proof domain: prove ϕ from the axioms of T

- Very powerful
- Interactive
 - Partially automated

- Tools: PVS, Isabelle/HOL
Deductive methods: closing remarks

• Approaches
 - DPLL-based SAT solving
 - Decision procedures
 - DPLL(T)-based SMT solving

• Formulas
 - Propositional logic (boolean)
 - Predicate logic with theories
 • Equality with uninterpreted functions
 • Linear arithmetic (difference logic)
 • Data structures (arrays, bit vectors)

• Applications in program verification
Bounded model checking
Bounded model checking

- Goal: Exploring traces with bounded length
 - Options: fixed integer value K, iteratively increasing
 - Still remember preemption bounding for threads?

- Approach
 - Encoding bounded program state space and properties into a logic formula ϕ
 - Find property violations by checking satisfiability of ϕ

- Challenge
 - Encoding program behavior into the formula ϕ
Program state space

- Program $P = (S, T, INIT)$
 - S is a set of program states
 - Predicates about values of program variables
 - Program counter (PC)
 - $INIT \subseteq S$ is a set of initial states
 - $T \subseteq S \times S$ is a transition relation

- Single transition
 - Updates program counter and some variables
 - Relating old and new values (x, x', pc, pc')
 - Example: $x = 2, x' = x + 1, pc = 5, pc' = pc + 1$
\[(pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)\]
\[\lor\]
\[(pc = 2) \land (x' = 0) \land (pc' = pc + 6)\]
\[\lor\]
\[\ldots\]
\[\lor\]
\[(pc = N) \land (x' = x - y + 5) \land (pc' = pc + 1)\]
Traces with bounded length

- Transition relation unfolded at most K times
 - Fresh copies of program variables \((x, x', \ldots, x^{(K)})\) used for each unfolding of the transition relation

- Example
 - INIT: \(x = 0, pc = 1\)
 - \(T(K): (((pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)) \lor \ldots \ldots) \)

- Specific consequences
 - Bounded number of loop iterations (unrolling)
Large formula

\[\text{INIT}(s_0) \land (\bigwedge_{i=0..k-1} T(s_i, s_{i+1})) \land (\bigvee_{i=0..k} \neg p(s_i)) \]

Represents all possible executions of the program with the length bounded by K
BMC: verification procedure

1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results
 - Satisfying assignment \Rightarrow we get a counterexample with the length $\leq K$
 - Unsatisfiable formula \Rightarrow no property violations in program executions of the length $\leq K$
BMC: technical challenges

- Encoding program in a mainstream language into a logic formula
 - heap, allocation, pointers, threads, synchronization

- Example: dynamic heap
 - Use predicate logic with array theory (*select, store*)
 - Array element access \(a[i] \)
 - Separate variables for the element \(a[i] \) and the index \(i \)
 - Pointer access \((*p) \)
 - Separate variables for dereference \(*p \) and the pointer \(p \)
 - Transitions defined properly
Further reading
