Deductive Methods, Bounded Model Checking

faculty of mathematics and physics

Deductive methods

If you want to know more ...

- Decision Procedures and Verification (NAIL094)
 - Lecturer: Martin Blicha, D3S
 - <u>http://d3s.mff.cuni.cz/teaching/decision_procedures/</u>

D. Kroening and O. Strichman. Decision
 Procedures: An Algorithmic Point of View.
 Springer, 2008.

Basic terminology (reminder)

- Logic formula
 - syntax, semantics
- Propositional logic
- First-order logic
 - Predicates
 - Quantifiers
- Assignment
 - Partial assignment
- Satisfiability
- Validity (tautology)

Relation between satisfiability and validity

φ is valid $\rightarrow \varphi$ is satisfiable φ is valid $\leftrightarrow !\varphi$ is unsatisfiable φ is satisfiable $\leftrightarrow !\varphi$ is not valid

Normal forms

• Negation normal form (NNF)

- syntax: !, |, & and variables
- Negation only for variables
- Example: (a | (b & !c)) & (!d)
- Conjunctive normal form (CNF)
 - NNF as a conjunction of disjunctions
 - Example: (a | b | !c) & (!d) & (e | !f)
- Disjunctive normal form (DNF)
 - NNF as a disjunction of conjunctions
 - Example: (a & b & !c) | (!d) | (e & !f)

Getting the normal forms

- De Morgan's law
- Distributive law

Q: Is there a problem with conversion ?

Getting the normal forms

 Transformation into an equivalent formula in CNF or DNF

- Problem: exponential blow-up of the size
- Remedy: creating equisatisfiable formula

Equisatisfiability

- Equisatisfiable formulas φ, ψ
 - both satisfiable or both unsatisfiable
- Examples

$\varphi: !(a \rightarrow b)$	ψ: a & !b	??
φ: <i>a</i> <i>b</i>	ψ: (a n) & (!n b)	??
ф: a & b & !c	ψ: true	??
$\varphi: !a \leftrightarrow b$	ψ: false	??

Equisatisfiability

- Equisatisfiable formulas φ, ψ
 - both satisfiable or both unsatisfiable
- Examples

 $\phi: !(a \rightarrow b)$ $\psi: a \& !b$ EQ, ES $\phi: a \mid b$ $\psi: (a \mid n) \& (!n \mid b)$ ES $\phi: a \& b \& !c$ $\psi: true$ ES $\phi: !a \leftrightarrow b$ $\psi: false$ -

Equisatisfiability

- Tseitin's encoding
 - Widely used algorithm for transforming a given propositional formula φ into an equisatisfiable formula φ' in CNF with linear growth only

Practice: various optimizations applied

0-0-0

• Goal

Decide whether a given propositional formula φ in CNF is satisfiable

- Possible answers
 - Satisfiable + assignment (values, model)
 - Unsatisfiable + core (subset of clauses)
- Satisfiable formula φ ↔ there exists a partial assignment satisfying all clauses in φ

Distributed and

- Naive brute force solution
 - Trying all possible assignments
 - Systematic traversal of a binary tree
- DPLL (Davis-Putnam-Loveland-Logemann)
 - Motivation: partial assignment can imply values of other variables in the given formula
 - Example: from $(!a \mid b)$, $v = \{a \rightarrow 1\}$ we get $\{b \rightarrow 1\}$
 - Approach: iterative deduction
 - Inferring value of a particular variable
 - Basic algorithm used in modern SAT solvers (with many additional optimizations) DPLL-based SAT solving

SAT solving: optimizations

- Adding learned clauses (implied)
- Non-chronological backtracking
- Choice of the branching variable
 - Various heuristics on the best choice exist

- Restarts
 - When it takes too long, restart the solver and use other "seeds" for heuristic functions

- Problem size: 10K 1M variables
 - Typical input formulas have structure
- Worse for random instances
- Hard instances exist (of course)
- Tools are getting better all the time
 - Reason: industry demand, annual competitions
 - <u>http://www.satcompetition.org/</u>

- Other approaches
 - Stochastic search (random walk)
 - Quickly finds solution for satisfiable instances
 - Ordered binary decision diagrams

Propositional logic: semantic X proof

- Semantic domain ⊨
 - Goal: find satisfying assignment for φ

• We know that: $\vDash \phi \leftrightarrow \vdash \phi$

- Proof domain ⊢
 - Goal: derive the proof
 - axioms, inference rules

17

Resolution

- Input: CNF formula φ (a set of clauses)
- Goal: derive empty clause (*false*)
- Iterative process
 - Choose two suitable clauses from the set
 - Requirement: they must have complementary literals r, !r
 - Apply resolution step on these clauses (p1 | ... | pN | r), (q1 | ... | qN | !r) → (p1 | ... | pN | q1 | ... | qN)
 - Add the newly derived clause into the set
 - Repeat until we derive *false* (or fail/stop)

Distributed and

Resolution

- Equivalent statements
 - 1) CNF formula ϕ is unsatisfiable
 - 2) We can derive empty clause using resolution on the clauses from φ

- Resolution used in practice
 - Checking validity of a first-order logic formula
 - Proof-by-contradiction
 - Add negation of the conjecture into the set

SAT solving and propositional logic

- SAT looks very good, but we need more
 - For program verification, full theorem proving, ...

- First-order logic (predicate logic)
- Interesting theories
 - Linear integer arithmetic (\mathbb{N}, \mathbb{Z})
 - Data structures (arrays, bit vectors)

Decision procedure

D-0.

Decision procedure

- Algorithm that
 - Always terminates
 - Outputs: YES/NO

- Decision procedure for a particular theory T
 - Always terminates and provides a correct answer for every formula of T
 - Goal: checking validity of logic formulas

Interesting theories

- Equality logic
 - With uninterpreted functions
- Linear arithmetic
 - Integer
 - Rational
- Difference logic
- Arrays
- Bit vectors

Equality logic

- Syntax
 - Atomic formulas

```
term = term | true | false
```

Terms

variable | constant

- Deciding validity of an equality logic formula is NP-complete problem
- Polynomial algorithm exists for the conjunctive fragment (uses only & and ∃)

Distributed and Dependable

Equality logic with uninterpreted functions

- Syntax
 - Atomic formulas

```
term = term | predicate(term, ..., term) | true | false
```

Terms

variable | constant | function(term, ..., term)

- Semantics
 - No implicit meaning of functions and predicates
 - $a1 = b1 \& ... \& aN = bN \to f(a1,...,aN) = f(b1,...,bN)$

Decision procedure

Transform into an equisatisfiable formula in equality logic

25

Equality logic with uninterpreted functions

- Purpose: abstraction

 - $\blacksquare \models \varphi^{\text{EUF}} \rightarrow \models \varphi$
- False answers possible
 - Example: *add*(1,2) != *add*(2,1) in EUF

Formula with UF easier to decide than the "full" formula

Linear arithmetic

- Syntax
 - Atomic formulas

```
term = term | term < term | term ≤ term | true | false
```

Terms

variable | constant | constant variable | term + term

- Example: $(3x + 2y \le 5z) \& (2x 2y = 0)$
- Arithmetic without multiplication
 Presburger arithmetic
- Decision procedure
 - General case (full theory): 2²⁰⁽ⁿ⁾
 - Conjunctive fragment over Q
 - Linear programming: Simplex method (EXP), Ellipsoid method (P)
 - Conjunctive fragment over Z
 - Integer linear programming (NP-complete)

istributed and Dependable

Difference logic

- Syntax
 - Atomic formulas

variable – variable < constant | variable – variable ≤ constant | true | false

- Operators: !, &, \leftarrow , \leftrightarrow
- Example: $(x y < 3) \& (y z \le -4) \& (z x \le 1)$
- Decision procedure
 - Conjunctive fragment polynomial for Qand Z

Distributed and Dependable

Data structures

- Array theory
 - Function symbols

select(a,i) // read, a[i]
store(a,i,e) // update, a[i] = e

Axiom read-over-write

select(store(a,i,e),i) = e

- Bit vectors
 - Motivation: precise computer arithmetic (overflows, ...)
 - Reasoning about individual bits in a finite vector (array)
 - Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
 - Decision procedure
 - Typically flattened into a large instance of SAT
 - Many clever optimizations (encoding)

Department of Distributed and Dependable

Combining theories

Goal

- Formulas that combine multiple theories
- Example: linear arithmetic + arrays

- Decision procedures
 - Combined under specific constraints
- Nelson-Oppen method

Decision procedures: summary

- Decision procedures
 - Typically work for conjunctive fragments of the respective theories

- But we still need more
 - Formulas with arbitrary boolean structure and interesting theories (linear arithmetic, arrays)

Satisfiability Modulo Theory (SMT)

0-0-6

Satisfiability Modulo Theory (SMT)

Goal

Decide satisfiability of a quantifier-free formula that involves constructs of specific theories

• Idea

Using combination of a SAT solver and a decision procedure (DP) for a conjunctive fragment of the respective theory

- Naive use of a SAT solver
 - 1. Extract boolean skeleton of the given formula $\boldsymbol{\varphi}$
 - 2. Run the SAT solver on the boolean skeleton
 a) unsatisfiable → the input formula is unsatisfiable
 b) satisfiable → we get a satisfying assignment v
 - 3. Run the DP on the formula derived from the satisfying assignment *v*
 - a) satisfiable \rightarrow the input formula is satisfiable
 - b) unsatisfiable → add the blocking clause for v to the boolean skeleton and continue with the step 2

istributed and

- DPLL(T)-based SMT solving
 - Eagerness: DPLL asks DP for partial assignments during traversal
 - Benefit: earlier conflict discovery
 - Updating the set of clauses given to DP on-the-fly
 - iteration (add), backtracking (remove)
 - Theory-based learning
 - DP can identify clauses valid/invalid in the given theory T

SMT solving in practice

- Available SMT solvers
 - Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...
- SMT-LIB v2
 - Defines common input format
 - Big library of SMT problems
 - <u>http://www.smt-lib.org/</u>
- SMT-COMP
 - Competition of SMT solvers
 - <u>http://smtcomp.org</u>

SMT solving in practice

- Current state
 - Good performance
 - Highly automated
 - Many applications

- Drawbacks
 - Restricted to specific theories and domains (\mathbb{Q},\mathbb{Z})
 - Very limited support for quantifiers (mostly 3)
 - Much less powerful than full theorem proving

Distributed and Dependable

Theorem proving

Input

- Theory T: set of axioms
- General formula φ in predicate logic
- Goal
 - Decide validity of the formula φ in T
 - Semantic domain: show unsatisfiable negation
 - Proof domain: prove ϕ from the axioms of T
- Very powerful
- Interactive
 - Partially automated
- Tools: PVS, Isabelle/HOL

Deductive methods: closing remarks

Approaches

- DPLL-based SAT solving
- Decision procedures
- DPLL(T)-based SMT solving

Formulas

- Propositional logic (boolean)
- Predicate logic with theories
 - Equality with uninterpreted functions
 - Linear arithmetic (difference logic)
 - Data structures (arrays, bit vectors)
- Applications in program verification

Bounded model checking

D-0.

Bounded model checking

- Goal: Exploring traces with bounded length
 - Options: fixed integer value K, iteratively increasing
 - Still remember preemption bounding for threads ?
- Approach
 - Encoding bounded program state space and properties into a logic formula φ
 - Find property violations by checking satisfiability of φ
- Challenge
 - Encoding program behavior into the formula φ

Program state space

- Program P = (S, T, INIT)
 - S is a set of program states
 - Predicates about values of program variables
 - Program counter (PC)
 - INIT \subseteq S is a set of initial states
 - T \subseteq *S* × *S* is a transition relation
- Single transition
 - Updates program counter and some variables
 - Relating old and new values (x, x', pc, pc')
 - Example: x = 2, x' = x + 1, pc = 5, pc' = pc + 1

Distributed and

$$(pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)$$

 \lor
 $(pc = 2) \land (x' = 0) \land (pc' = pc + 6)$
 \lor
 \cdots
 \lor
 \lor
 $(pc = N) \land (x' = x - y + 5) \land (pc' = pc + 1)$

0-0-

Traces with bounded length

- Transition relation unfolded at most K times
 - Fresh copies of program variables (x, x', ..., x^(K)) used for each unfolding of the transition relation
- Example

T(K): (

$$((pc = 1) \land (x' = x + 2y) \land (pc' = pc + 1)) \lor$$

$$((pc^{(K-1)} = 1) \land (x^{(K)} = x^{(K-1)} + 2y^{(K-1)}) \land (pc^{(K)} = pc^{(K-1)} + 1)) \lor$$

$$\dots \dots \dots$$
)

- Specific consequences
 - Bounded number of loop iterations (unrolling)

Encoding program behavior in logic

Large formula

$$INIT(s_0) \land (\bigwedge_{i=0..k-1} T(s_i, s_i+1)) \land (\bigvee_{i=0..k} \neg p(s_i))$$

 Represents all possible executions of the program with the length bounded by K

1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results

- Satisfying assignment → we get a counterexample with the length ≤ K
- Unsatisfiable formula → no property violations in program executions of the length ≤ K

BMC: technical challenges

- Encoding program in a mainstream language into a logic formula
 - heap, allocation, pointers, threads, synchronization
- Example: dynamic heap
 - Use predicate logic with array theory (select, store)
 - Array element access a [i]
 - Separate variables for the element <code>a[i]</code> and the index <code>i</code>
 - Pointer access (*p)
 - Separate variables for dereference *p and the pointer p
 - Transitions defined properly

D. Kroening and O. Strichman. Decision
 Procedures: An Algorithmic Point of View.
 Springer, 2008.

 A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking. Advanced in Computers, 58, 2003

