Static Analysis: Overview, Data-Flow
Static analysis

• Purpose
 ▪ Gather information about run-time behavior of programs without executing them

• Information
 ▪ Does the variable x have a constant value?
 ▪ Is the value of the variable x always positive?
 ▪ May the pointer p be null at a code location?
 ▪ What are possible values of the variable y?
Static analysis: characteristics

• Target model of program behavior
 ▪ some kind of *Control Flow Graph (CFG)*

• Provides *approximate* answers
 ▪ Decision problems: yes / no / don’t know
 ▪ Collecting some values: superset / subset

• Information valid for all possible runs

• Summarizing different execution paths
 ▪ branches of the *if-else* statement, loop iterations

• Does not know run-time values (inputs)
Comparison

<table>
<thead>
<tr>
<th>Static analysis</th>
<th>Model checking</th>
</tr>
</thead>
<tbody>
<tr>
<td>control-flow graph</td>
<td>program state space</td>
</tr>
<tr>
<td>summarizes information from different paths</td>
<td>reasons about execution paths independently</td>
</tr>
<tr>
<td>approximation</td>
<td>path-sensitivity</td>
</tr>
<tr>
<td>scalability</td>
<td>precision</td>
</tr>
</tbody>
</table>
Static analysis in practice

- Optimizing compilers
 - Detect superfluous evaluations of the same expression
 - Detect unused local variables or dead code fragments

- Program verification
 - Search for possible runtime errors
 - Example: null pointer dereference, unsynchronized access
 - Constructing abstraction for model checking
 - Slicing: identify statements irrelevant for a given property
Q: What important restrictions there are?
Restrictions

• Approximation must be safe
 ▪ That precisely means “imprecise on the safe side”

• Target domain: optimizing compilers
 ▪ Under-approximation
 • Optimization performed on the basis of analysis results must not violate semantics of a given program
 ▪ Example: constant propagation
 • Sound analysis identifies a program variable as a constant only when it is really certain (100%)
Restrictions

- Approximation must be safe
 - That precisely means “imprecise on the safe side”

- Target domain: search for errors
 - Over-approximation
 - Safe analysis reports all real errors and also some spurious errors (false positives)
 - Example: possible null dereferences
 - We want to know about all of them so we can add runtime checks (if (v != null) ...)
Basic concepts (theory and examples)
Running example

- **Program**
  ```c
  int factorial(int n) {
    int r;
    if (n == 0) r = 0;
    int f = 1;
    while (n > 0) {
      f = f * n;
      n = n - 1;
      if (n == 0) r = f;
    }
    return r;
  }
  ```

- **Static analysis**: possibly uninitialized variables
Control flow graph (CFG)

- Directed graph with labels
- Nodes: program points (statements)
- Edges: possible flow of control
 - \(\text{pred}(n) \) and \(\text{succ}(n) \) for each node \(n \) in a CFG
- Single point of entry
- Single point of exit
sequence
$S_1;S_2$

if (E) \{ S \}

if (E) \{ S_1 \}
else \{ S_2 \}

while (E) \{ S \}
• Set of possible values (facts)

• Finite lattice over the set
Partial order

- Mathematical structure $L = (S, \subseteq)$
 - S is a set of values (e.g., analysis facts)
 - \subseteq is a binary relation (e.g., is-subset)
 - Reflexivity: $\forall x \in S : x \subseteq x$
 - Transitivity: $\forall x, y, z \in S : x \subseteq y \land y \subseteq z \Rightarrow x \subseteq z$
 - Anti-symmetry: $\forall x, y \in S : x \subseteq y \land y \subseteq x \Rightarrow x = y$

- Examples
Bounds

Let's have a partial order \(L = (S, \subseteq) \) and \(X \subseteq S \)

- **Upper bound**
 - \(y \in S \) is an upper bound for \(X \), i.e. \(X \subseteq y \), if \(\forall x \in X : x \subseteq y \)

- **Lower bound**
 - \(y \in S \) is a lower bound for \(X \), i.e. \(y \subseteq X \), if \(\forall x \in X : y \subseteq x \)

- **Least upper bound of** \(X \), denoted as \(\sqcup X \)
 - \(X \subseteq \sqcup X \land \forall y \in S : X \subseteq y \Rightarrow \sqcup X \subseteq y \)

- **Greatest lower bound of** \(X \), denoted as \(\sqcap X \)
 - \(\sqcap X \subseteq X \land \forall y \in S : y \subseteq X \Rightarrow y \subseteq \sqcap X \)
Bounds: example 1

Let's have a partial order \(L = (S, \sqsubseteq) \) and the set \(S = \{a, b, c, d, e\} \)

The upper bounds of \(X = \{a, b\} \) are the elements \(\{c, e\} \)
Bounds: example 2

Let's have a partial order $L = (S, \sqsubseteq)$ and the set $S = \{a, b, c, d, e\}$

The greatest lower bound of $X = \{b, e\}$ is the element b
Lattice

- Partial order $L = (S, \sqsubseteq)$ such that
 - $\sqcup X$ and $\sqcap X$ exist for $\forall X \subseteq S$
 - Unique greatest element $\top = \sqcup S = \sqcap \emptyset$
 - Unique least element $\bot = \sqcap S = \sqcup \emptyset$

- Height of a lattice
 - Length of the longest path from \bot to \top
Finite lattice

- Partial order \(L = (S, \sqsubseteq) \) such that
 - \(\forall x, y \in S \) there is
 - Least upper bound \(x \sqcup y \)
 - Greatest lower bound \(x \sqcap y \)
Lattice: examples
Lattice $L = (S, \sqsubseteq)$
- Set S of analysis facts (units of information)
- Relation \sqsubseteq defines an ordering with respect to precision of the abstraction
 - $x \sqsubseteq y \Rightarrow x$ is more precise than y
 - $x \sqsubseteq y \Rightarrow y$ approximates x

Example
- Sign abstraction: $x = \{ \text{POS} \}$, $y = \{ \text{POS, ZERO} \}$
How to construct lattices

- Finite set R induces a lattice $(2^R, \sqsubseteq)$
 - $\perp = \cup \emptyset$
 - No information available
 - $\top = R$
 - Any possible value
 - $x \sqcup y = x \cup y$
 - $x \sqcap y = x \cap y$
 - Height $|R|$

- Example
 - Set $R = \{0, 1, 2\}$
 - Height = 3

\[T = \{0,1,2\} \]
\[\perp = \{\} \]
\[\top = \{0,1,2\} \]
\[\{0,1\} \quad \{0,2\} \quad \{1,2\} \]
\[\{0\} \quad \{1\} \quad \{2\} \]
\[\perp = \{\} \]
Running example

- Program
  ```c
  int factorial(int n) {
    int r;
    if (n == 0) r = 0;
    int f = 1;
    while (n > 0) {
      f = f * n;
      n = n - 1;
      if (n == 0) r = f;
    }
    return r;
  }
  ```

- Static analysis: possibly uninitialized variables
Encoding program statements

- Data for each node in the CFG
 - IN: valid before the program statement
 - OUT: valid after the program statement

- Merge operator \sqcup
 - CFG nodes with multiple predecessors
 - Typical approach: union or intersection

- Transfer functions
Transfer functions

- For each node in CFG (statement), we must define a transfer function

\[\text{OUT} = (\text{IN} \setminus \text{kill}) \cup \text{gen} \]

- Examples
 - Statement \(\text{int } r; \)

 \[\text{kill} = \{\}, \text{gen} = \{ r \} \]
 - Statement \(r = f; \)

 \[\text{kill} = \{ r \}, \text{gen} = \{\} \]
Monotone functions

- Function $f : S \rightarrow S$ is monotone if
 - $\forall x, y \in S : x \subseteq y \Rightarrow f(x) \subseteq f(y)$

- Examples
 - Constant functions
 - Operators \sqcap and \sqcup
 - Their compositions
Computing static analysis

- **Input**
 - Control flow graph of the given program
 - Initial value for each CFG node (⊥ or ∅)
 - Value is the set of known analysis facts (information)
 - Merge operator defined as the set union
 - Transfer functions F_i for each node in CFG

- **Approach:** *compute fixed points*
 - Information associated with the CFG nodes
Duality

\((S, \sqsubseteq)\) is a lattice ⇔ \((S, \sqsupseteq)\) is a lattice

\[
\begin{align*}
\bigsqcup_{(S, \sqsubseteq)} &= \bigsqcap_{(S, \sqsupseteq)} \\
\bigsqcap_{(S, \sqsubseteq)} &= \bigsqcup_{(S, \sqsupseteq)}
\end{align*}
\]

\(\top_{(S, \sqsubseteq)} = \bot_{(S, \sqsupseteq)}\)

\(\bot_{(S, \sqsubseteq)} = \top_{(S, \sqsupseteq)}\)

• We focus just on \(\sqsubseteq\) and initial values \(\bot\)
Computing fixed points

• Motto: “walk up the lattice starting at \(\perp \), until you reach a fixed point”
 ▪ In the worst case, \(\top \) is the fixed point (if exists)

• Three algorithms
 ▪ Naive (brute force)
 ▪ Chaotic iteration
 ▪ Worklist algorithm
Worklist algorithm

\[u_1 = \perp; \ldots, u_n = \perp; \]
\[q = [1, \ldots, n]; \]
\[\text{while} \ (q \neq []) \{ \]
\[\quad i = \text{head}(q); \]
\[\quad v_{\text{IN}} = \text{merge}(\text{pred}(i)); \]
\[\quad v_{\text{OUT}} = F_i(v_{\text{IN}}); \]
\[\quad q = \text{tail}(q); \]
\[\quad \text{if} \ (v_{\text{OUT}} \neq u_i) \{ \]
\[\quad \quad \text{append}(q, \text{succ}(i)); \]
\[\quad \quad u_i = v_{\text{OUT}}; \]
\[\quad \} \]
\[\} \]
Classification
Static analysis categories

- Data-flow analysis
- Call graph construction
- Pointer analysis (aliasing)
- Escape analysis (threads)
- Side effect analysis
Data-flow analysis

- Available expressions
- Reaching definitions
- Live variables (values)
Available expressions

```javascript
var x, y, a, b;
y = a - b;
while (y < a + b) {
    a = a - 1;
    x = a + b;
}
```

```javascript
var x, y, a, b, t;
y = a - b;
t = a + b;
while (y < t) {
    a = a - 1;
    t = a + b;
    x = t;
}
```
Direction

- **Forward analysis**
 - Computes information about the past behavior
 - Starts at the entry node (CFG) and goes forward

- **Backward analysis**
 - Computes information about the future behavior
 - Starts at the exit CFG node and moves backwards
May analysis
- Computes information that **may be true** (over-approximation)
 - Information for P that is true at least for one path coming into P
- Merge operator: set union

Must analysis
- Computes information that **must be true** (under-approximation)
 - Information for P that is true for all execution paths coming into P
- Merge operator: set intersection
Flow sensitivity

- Flow-sensitive analysis
 - Considers the program’s control flow (CFG) and the order of individual statements
 - Example: available expressions

- Flow-insensitive analysis
 - Program seen as an unordered collection of statements
 - Results are valid for any order of program statements
 - $S1 ; S2$ versus $S2 ; S1$
 - Example: type analysis (inference)
Scope

• Intra-procedural
 - Every single procedure analyzed separately
 - Maximally pessimistic assumptions about side effects of procedure calls

• Inter-procedural
 - Whole program analyzed together
 - Sometimes without libraries (huge)
Context sensitivity

- Context-sensitive analysis
 - Call site: source code location for the call
 - Call stack: procedure calls and returns
 - Receiver objects for method calls ("this")
 - Analysis results for the method M depend on the specific caller of M

- Context-insensitive analysis
 - Same analysis results for every call site of M
Tools

- WALA
 - Java, JavaScript, JVM (bytecode)
 - https://wala.github.io/

- Soot
 - Java, JVM-based languages (bytecode)

- CIL
 - Only for programs written in C
 - http://www.cs.berkeley.edu/~necula/cil/
 - https://github.com/cil-project/cil

- LLVM
 - C, C++, Objective-C
 - Clang static analyzer
 - http://llvm.org/
Further reading

- M. Schwartzbach. *Lecture Notes on Static Analysis*. Department of CS, Aarhus University