Combining Verification
Approaches

http://d3s.mff.cuni.cz

S Pavel Parizek

Dependable

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Verification approaches

®* Model checking programs
= Explicit state (Java Pathfinder)
= Abstraction-based (CEGAR, ...)

* Symbolic execution (concolic testing)
* Deductive methods (Spec#/Boogie)
® Static analysis (data-flow, pointers)

® Abstract interpretation

® Dynamic analysis (runtime)

® Classical testing (e.g., JUnit)

Pavel Parizek Combining Verification Approaches 2

Evaluation

* Advantages
= Model checking
® path-sensitive, very precise, does not scale well (state explosion)

= Static analysis
* explores all program behaviors, limited precision, highly scalable

® Limitations

= Abstraction-based model checking and deductive methods
® Problem with concurrency (limited support for threads)
® Very good at checking properties related to data values

= Explicit state model checking
® Supports threads well (detecting concurrency errors)
® Does not handle data non-determinism very well

Pavel Parizek Combining Verification Approaches 3

Categories

® Search for errors

= testing, symbolic execution, dynamic analysis

® Search for proofs

= program model checking, deductive methods

Pavel Parizek Combining Verification Approaches 4

Search for errors

°* Program executed concretely on many inputs
= Finds only real errors
= Achieves small coverage

* Abstract execution tracking only some facts
= Covers all the program paths
= Reports many false positives

°* Intermediate solutions
= Example: directed concolic testing

Pavel Parizek Combining Verification Approaches 5

Search for proofs

®* Goal: find the safe over-approximation

°* Model checking: reachable state space
®* Deductive methods: inductive invariant

® Limitations
= Verification procedure might not terminate
= State explosion (many thread interleavings)

® Recent solutions: CEGAR

Pavel Parizek Combining Verification Approaches 6

Bonus topics

°* Combining tests and program verification
* Detecting some bugs in web applications
®* Program termination and checking liveness

°* Program synthesis: overview, current state

Pavel Parizek Combining Verification Approaches 7

Combining tests and verification

® Search for errors and proofs at the same time

® Using results of one search also in the other

°* Example: SYNERGY

= B.S. Gulavani, T.A. Henzinger, Y. Kannan, A.V. Nori,
and S.K. Rajamani. SYNERGY: A New Algorithm
for Property Checking. SIGSOFT FSE 2006, ACM.

Pavel Parizek Combining Verification Approaches 8

Example program

X = 0;

while (x < 1000) {
X = X + 1;

assert (x > 1000);

Pavel Parizek Combining Verification Approaches 9

Checking dynamic web applications
e
®* Dynamic programming languages
= Features: dynamically typed programs, eval ()
°* Implicit input parameters (GET, POST)
* Persistent state (database, cookies)
°* Complex patterns of user interactions
°* On-the-fly generating of source code
* Control flows through the HTML pages

= forms, buttons, input events (keyboard, mouse)

Pavel Parizek Combining Verification Approaches 10

Checking dynamic web applications

°* Example: Apollo

= S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A.M.
Paradkar, and M.D. Ernst. Finding Bugs in Web
Applications Using Dynamic Test Generation and
Explicit-State Model Checking. IEEE Transactions
on Software Engineering, 36(4), 2010.

Pavel Parizek Combining Verification Approaches 11

Example program

<?php

if (!isset($ GET['step'])) $step = 1;

else $step = $§ GET['step'];

if ($ GET["login"] == 1) validateAuth();

switch ($step) {
case 1: require('login.php'); break;
case 2: require('news.php'); break;
case 3: require('inbox.php'); break;
default: die("wrong input!");

}

’>

Pavel Parizek Combining Verification Approaches 12

Convergence

* Classic model checking
= Program model: abstract reachability tree
= Path-sensitive: never joins different paths

* Static program analysis
= Program model: control flow graph (inter-proc)
= Path-insensitive: losing precision at join points

Pavel Parizek Combining Verification Approaches 13

Generalization

* Abstract domain
* Transfer functions
®* Merge operator
°* Termination check

* Based on this research paper

= D. Beyer, T. A. Henzinger, and G. Theoduloz.
Configurable Software Verification: Concretizing
the Convergence of Model Checking and Program
Analysis. CAV 2007, LNCS 4590.

Pavel Parizek Combining Verification Approaches 14

