
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Combining Verification
Approaches

Pavel Parízek

Verification approaches

Pavel Parízek Combining Verification Approaches 2

Model checking programs
Explicit state (Java Pathfinder)

Abstraction-based (CEGAR, ...)

Symbolic execution (concolic testing)

Deductive methods (Spec#/Boogie)

Static analysis (data-flow, pointers)

Abstract interpretation

Dynamic analysis (runtime)

Classical testing (e.g., JUnit)

Evaluation

Pavel Parízek Combining Verification Approaches 3

Advantages
Model checking

path-sensitive, very precise, does not scale well (state explosion)

Static analysis
explores all program behaviors, limited precision, highly scalable

Limitations
Abstraction-based model checking and deductive methods

Problem with concurrency (limited support for threads)

Very good at checking properties related to data values

Explicit state model checking
Supports threads well (detecting concurrency errors)

Does not handle data non-determinism very well

Categories

Pavel Parízek Combining Verification Approaches 4

Search for errors

testing, symbolic execution, dynamic analysis

Search for proofs

program model checking, deductive methods

Search for errors

Pavel Parízek Combining Verification Approaches 5

Program executed concretely on many inputs
Finds only real errors

Achieves small coverage

Abstract execution tracking only some facts
Covers all the program paths

Reports many false positives

Intermediate solutions
Example: directed concolic testing

Search for proofs

Pavel Parízek Combining Verification Approaches 6

Goal: find the safe over-approximation

Model checking: reachable state space

Deductive methods: inductive invariant

Limitations
Verification procedure might not terminate

State explosion (many thread interleavings)

Recent solutions: CEGAR

Bonus topics

Pavel Parízek Combining Verification Approaches 7

Combining tests and program verification

Detecting some bugs in web applications

Program termination and checking liveness

Program synthesis: overview, current state

Combining tests and verification

Pavel Parízek Combining Verification Approaches 8

Search for errors and proofs at the same time

Using results of one search also in the other

Example: SYNERGY

B.S. Gulavani, T.A. Henzinger, Y. Kannan, A.V. Nori,
and S.K. Rajamani. SYNERGY: A New Algorithm
for Property Checking. SIGSOFT FSE 2006, ACM.

Example program

Pavel Parízek Combining Verification Approaches 9

x = 0;

while (x < 1000) {

x = x + 1;

}

assert (x > 1000);

Checking dynamic web applications

Pavel Parízek Combining Verification Approaches 10

Dynamic programming languages

Features: dynamically typed programs, eval()

Implicit input parameters (GET, POST)

Persistent state (database, cookies)

Complex patterns of user interactions

On-the-fly generating of source code

Control flows through the HTML pages

forms, buttons, input events (keyboard, mouse)

Checking dynamic web applications

Pavel Parízek Combining Verification Approaches 11

Example: Apollo

S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A.M.
Paradkar, and M.D. Ernst. Finding Bugs in Web
Applications Using Dynamic Test Generation and
Explicit-State Model Checking. IEEE Transactions
on Software Engineering, 36(4), 2010.

Example program

Pavel Parízek Combining Verification Approaches 12

<?php

if (!isset($_GET['step'])) $step = 1;

else $step = $_GET['step'];

if ($_GET["login"] == 1) validateAuth();

switch ($step) {

case 1: require('login.php'); break;

case 2: require('news.php'); break;

case 3: require('inbox.php'); break;

default: die("wrong input!");

}

?>

Convergence

Pavel Parízek Combining Verification Approaches 13

Classic model checking

Program model: abstract reachability tree

Path-sensitive: never joins different paths

Static program analysis

Program model: control flow graph (inter-proc)

Path-insensitive: losing precision at join points

Generalization

Pavel Parízek Combining Verification Approaches 14

Abstract domain

Transfer functions

Merge operator

Termination check

Based on this research paper
D. Beyer, T. A. Henzinger, and G. Theoduloz.
Configurable Software Verification: Concretizing
the Convergence of Model Checking and Program
Analysis. CAV 2007, LNCS 4590.

