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Key concepts

°* Each developer uses a private local repository

= clone: full mirror of some existing repository

®* Operations performed on the local repository

= very fast, off-line

* Synchronization
= QOperations push and pull
= Exchanging code patches
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Comparing distributed and centralized VCS

* Centralized
= Everything visible in the central repository
= Private branches (work) not possible

® Distributed

= Private repositories (and branches) useful for
experimental development
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Tools

° Git

® Mercurial
® Bazaar
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Main features

* Versions: snapshots of the project (working dir)

* Committed revisions form a direct acyclic graph
= Multiple “latest” versions (leaf nodes)

® Each commit has an author and committer
= Distributing changesets via patches (email)

* Whole repository stored in .git (files, metadata)

® Confusing for most people (good for advanced users)
® Commands have names similar to SVN
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Usage scenario

Local Operations

working staging
directory area

Picture taken from http://git-scm.com/book/
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Task 1

* Configure your identity

"= git config —-—-global user.name
“<your full name>”

"= git config —-—-global user.email
“<your emaill address>"

° Storedin SHOME/ .gitconfig
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Basic commands

®* Create repository in the current directory: git init
® Print status of the working tree: git status
* Start tracking new files: git add <work dir path>
°* Add files to the staging area: git add <path>
* Commit staged modifications: git commit -m “...”
® Print uncommitted unstaged changes: git diff
® Print staged uncommitted changes:
glt diff --staged
* Automatically stage every tracked file and commit
git commit -a -m “...”
* Revert modifications: git checkout -- <path>
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File status lifecycle

File Status Lifecycle

Picture taken from http://git-scm.com/book/ Dependabie
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Task 2

®* Create repository in a specific directory
®* Create some new files (e.g., hello world)

® Print current status of your repository and
the working directory

* Stage all the new files
® Print current status
* Modify one of the files

® Print current status
" Inspect differences from the previous invocation

®* Commit all staged modifications
® Print current status
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Managing files

°* Make the given file untracked
glt rm <work dir path>

°* Renaming file (directory)
glit mv <old path> <new path>
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Pick your changes

°* Full interactive mode: git add -i

® Select patch hunks: git add -p
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Project history

° List all the commits
git log [-p] [-<N>] [--stat]

®* More options
 ——-pretty=oneline|short|full|fuller]
 ——graph]

 ——s1ince=YYYY-MM-DD]
 ——unt1l=YYYY-MM-DD]

[ ——author=<name>]
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Task 3

* Try out file management commands (rm, mv)

* Play with the “git log” command

= Explore different parameters (-p, —<N>, ——stat,
-—-pretty, ——graph)

®* Run the program “gitk” and try it

* Make some changes to a particular file and use
Interactive staging
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Using remote repositories

Nastroje pro v

Clone a remote repository in the current local
directory: git clone <repo url>

Get recent changes in all branches from the
remote repository: git fetch origin

Get recent changes in the “master” branch and
merge into your working copy: git pull
= Announcements via pull requests

Publish local changes in the remote repository:
glt push origln master
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Branches in Git
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Branches in Git

s ® s © 5. © s
®* Branch: pointer to a node in the revision DAG
°* Default branch: master

* Commit: branch pointer moves forward

master |

'

9f8cald |4—| 3dac?2 |<—| f30ab |

‘ testing

Picture taken from http://git-scm.com/book/
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What happens after concurrent modification
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testing

Picture taken from http://git-scm.com/book/
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Branches in Git: commands

® Create new branch: git branch <name>
® Switch to given branch: git checkout <name>
® Shortcut: git checkout -b <name>
® Merge branch into current working directory
glt merge <branch name>
®* Deleting unnecessary branch
glt branch -d <branch name>

® Listall branches: git branch [-a]

® Current branch marked with *
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Comparing branches

e git diff <branch 1>..<branch 2>

= Compare heads of the two branches
= Note the characters *. .’

e git diff <branch 1>...<branch 2>

= Print changes on the branch 2 (e.g., master) since
the branch 1 (feature) was created from it

= Note the characters ‘. ..’
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Three-way merge

® Common ancestor
* Target branch
® Source branch

* Conflicts happen also with Git
= Standard markers <<<<<< ====== >>>>>>
= Marking resolved files: git add

® Graphical merging tool: git mergetool
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Task 4

®* Create new branch B and switch to it
* Modify some files and commit them
* Switch back to the master branch

* Modify some files and then commit
®* Merge your branch B into the master
® Delete the now unnecessary branch

* Try switching branches with uncommitted
changes in the working copy

®* Try graphical merging tool on some conflicts
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More advanced features

* Symbolic names of versions
= HEAD, HEAD~1, HEAD"2
* Using stack of unfinished changes (stashing)
® glt reset
= Several variants: clear the index, undo some commits
e glt rebase

= Replaying changes done in a branch onto another branch
= Very powerful command but also tricky

* Modifying committed history
= e.g., commit messages
® |gnoring certain files
= List patternsin the file .gitignore
°* Tagging:git tag
®* Bare repository
= No working copy
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Mercurial

® Basic principles: like Git

* Simpler learning curve

°* Commands very similar
= 1init, clone, add, commit, merge, push, pull

* Better support for Windows

Nastroje pro vyvoj software Distributed Version Control 25



Work-flow models (cooperation)
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Work-flow models (cooperation)

* Anything possible technically with DVCS
* “Network of trust” between developers

°* Examples

I”

= Single “central” repository
= Multiple release repositories
= Many public repositories

= Total anarchy
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Single “central” repository

Privileged
Developer
Repository

Privileged
Developer
Repository

Central
Repository

Normal
Developer
Repository

Normal
Developer
Repository
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Multiple release repositories

Developer
Repository
DB branch

Developer
Repository
GUI branch

ha Y Main
Repository

development

Release 1 Release 3

Repository Repository

Release 2
Repository
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Many public repositories

® Linux kernel

Official
Release

Vendor
Release

Vendor
Release

Module

Module

Development Main Development
experiments Development experiments
integration

Module

Development
experiments

Module

Development
experiments
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Total anarchy

Repository
no.1

Repository
no. 2

Repository

no.5

Repository Repository

no. 4 no. 3
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Links

® @Git documentation
= http://git-scm.com/doc

® Mercurial
= http://www.mercurial-scm.org/, http://hgbook.red-bean.com/

® Repository servers
= https://github.com/
= https://bitbucket.org/
= https://gitlab.com/

® Tools

= Git for Windows (http://msysgit.github.io/), TortoiseGit (Win),
SmartGit (http://www.syntevo.com/smartgit/)

= TortoiseHg (Mercurial GUI, Windows)
= SourceTree (https://www.sourcetreeapp.com/, Git and Mercurial)
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Homework

® Assignment
" http://d3s.mff.cuni.cz/~parizek/teaching/sdt/

® Deadline
= 22.10.2018 / 23.10.2018
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