Distributed
Version Control

http://d3s.mff.cuni.cz

e e Pavel Parizek

Dependable
parizek@d3s.mff.cuni.cz

k74 Naaai Y AN
Sx e Y
e

& OO A
22 s

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Key concepts

°* Each developer uses a private local repository

= clone: full mirror of some existing repository

®* Operations performed on the local repository

= very fast, off-line

* Synchronization
= QOperations push and pull
= Exchanging code patches

Nastroje pro vyvoj software Distributed Version Control 2

Comparing distributed and centralized VCS

* Centralized
= Everything visible in the central repository
= Private branches (work) not possible

® Distributed

= Private repositories (and branches) useful for
experimental development

Nastroje pro vyvoj software Distributed Version Control 3

Tools

° Git

® Mercurial
® Bazaar

Nastroje pro vyvoj software Distributed Version Control 4

Nastroje pro vyvoj software Distributed Version Control 5

Main features

* Versions: snapshots of the project (working dir)

* Committed revisions form a direct acyclic graph
= Multiple “latest” versions (leaf nodes)

® Each commit has an author and committer
= Distributing changesets via patches (email)

* Whole repository stored in .git (files, metadata)

® Confusing for most people (good for advanced users)
® Commands have names similar to SVN

Nastroje pro vyvoj software Distributed Version Control 6

Usage scenario

Local Operations

working staging
directory area

Picture taken from http://git-scm.com/book/

Ndastroje pro vyvoj software Distributed Version Control 7

Task 1

* Configure your identity

"= git config —-—-global user.name
“<your full name>”

"= git config —-—-global user.email
“<your emaill address>"

° Storedin SHOME/ .gitconfig

Nastroje pro vyvoj software Distributed Version Control 8

Basic commands

®* Create repository in the current directory: git init
® Print status of the working tree: git status
* Start tracking new files: git add <work dir path>
°* Add files to the staging area: git add <path>
* Commit staged modifications: git commit -m “...”
® Print uncommitted unstaged changes: git diff
® Print staged uncommitted changes:
glt diff --staged
* Automatically stage every tracked file and commit
git commit -a -m “...”
* Revert modifications: git checkout -- <path>

Nastroje pro vyvoj software Distributed Version Control 9

File status lifecycle

File Status Lifecycle

Picture taken from http://git-scm.com/book/ Dependabie

Ndastroje pro vyvoj software Distributed Version Control 10

Task 2

®* Create repository in a specific directory
®* Create some new files (e.g., hello world)

® Print current status of your repository and
the working directory

* Stage all the new files
® Print current status
* Modify one of the files

® Print current status
" Inspect differences from the previous invocation

®* Commit all staged modifications
® Print current status

Nastroje pro vyvoj software Distributed Version Control 11

Managing files

°* Make the given file untracked
glt rm <work dir path>

°* Renaming file (directory)
glit mv <old path> <new path>

Nastroje pro vyvoj software Distributed Version Control 12

Pick your changes

°* Full interactive mode: git add -i

® Select patch hunks: git add -p

Nastroje pro vyvoj software Distributed Version Control 13

Project history

° List all the commits
git log [-p] [-<N>] [--stat]

®* More options
 ——-pretty=oneline|short|full|fuller]
 ——graph]

 ——s1ince=YYYY-MM-DD]
 ——unt1l=YYYY-MM-DD]

[——author=<name>]

Nastroje pro vyvoj software Distributed Version Control 14

Task 3

* Try out file management commands (rm, mv)

* Play with the “git log” command

= Explore different parameters (-p, —<N>, ——stat,
-—-pretty, ——graph)

®* Run the program “gitk” and try it

* Make some changes to a particular file and use
Interactive staging

Nastroje pro vyvoj software Distributed Version Control 15

Using remote repositories

Nastroje pro v

Clone a remote repository in the current local
directory: git clone <repo url>

Get recent changes in all branches from the
remote repository: git fetch origin

Get recent changes in the “master” branch and
merge into your working copy: git pull
= Announcements via pull requests

Publish local changes in the remote repository:
glt push origln master

yvoj software Distributed Version Control 16

Branches in Git

Nastroje pro vyvoj software Distributed Version Control 17

Branches in Git

s ® s © 5. © s
®* Branch: pointer to a node in the revision DAG
°* Default branch: master

* Commit: branch pointer moves forward

master |

'

9f8cald |4—| 3dac?2 |<—| f30ab |

‘ testing

Picture taken from http://git-scm.com/book/

Nastroje pro vyvoj software Distributed Version Control 18

What happens after concurrent modification

87ab2

c2b%e

]
—-iqt-ﬂ

testing

Picture taken from http://git-scm.com/book/

Nastroje pro vyvoj software Distributed Version Control 19

Branches in Git: commands

® Create new branch: git branch <name>
® Switch to given branch: git checkout <name>
® Shortcut: git checkout -b <name>
® Merge branch into current working directory
glt merge <branch name>
®* Deleting unnecessary branch
glt branch -d <branch name>

® Listall branches: git branch [-a]

® Current branch marked with *

Nastroje pro vyvoj software Distributed Version Control 20

Comparing branches

e git diff <branch 1>..<branch 2>

= Compare heads of the two branches
= Note the characters *. .’

e git diff <branch 1>...<branch 2>

= Print changes on the branch 2 (e.g., master) since
the branch 1 (feature) was created from it

= Note the characters ‘. ..’

Nastroje pro vyvoj software Distributed Version Control 21

Three-way merge

® Common ancestor
* Target branch
® Source branch

* Conflicts happen also with Git
= Standard markers <<<<<< ====== >>>>>>
= Marking resolved files: git add

® Graphical merging tool: git mergetool

Nastroje pro vyvoj software Distributed Version Control 22

Task 4

®* Create new branch B and switch to it
* Modify some files and commit them
* Switch back to the master branch

* Modify some files and then commit
®* Merge your branch B into the master
® Delete the now unnecessary branch

* Try switching branches with uncommitted
changes in the working copy

®* Try graphical merging tool on some conflicts

Nastroje pro vyvoj software Distributed Version Control 23

More advanced features

* Symbolic names of versions
= HEAD, HEAD~1, HEAD"2
* Using stack of unfinished changes (stashing)
® glt reset
= Several variants: clear the index, undo some commits
e glt rebase

= Replaying changes done in a branch onto another branch
= Very powerful command but also tricky

* Modifying committed history
= e.g., commit messages
® |gnoring certain files
= List patternsin the file .gitignore
°* Tagging:git tag
®* Bare repository
= No working copy

Nastroje pro vyvoj software Distributed Version Control 24

Mercurial

® Basic principles: like Git

* Simpler learning curve

°* Commands very similar
= 1init, clone, add, commit, merge, push, pull

* Better support for Windows

Nastroje pro vyvoj software Distributed Version Control 25

Work-flow models (cooperation)

Nastroje pro vyvoj software Distributed Version Control 26

Work-flow models (cooperation)

* Anything possible technically with DVCS
* “Network of trust” between developers

°* Examples

I”

= Single “central” repository
= Multiple release repositories
= Many public repositories

= Total anarchy

Nastroje pro vyvoj software Distributed Version Control 27

Single “central” repository

Privileged
Developer
Repository

Privileged
Developer
Repository

Central
Repository

Normal
Developer
Repository

Normal
Developer
Repository

Nastroje pro vyvoj software Distributed Version Control 28

Multiple release repositories

Developer
Repository
DB branch

Developer
Repository
GUI branch

ha Y Main
Repository

development

Release 1 Release 3

Repository Repository

Release 2
Repository

Nastroje pro vyvoj software Distributed Version Control 29

Many public repositories

® Linux kernel

Official
Release

Vendor
Release

Vendor
Release

Module

Module

Development Main Development
experiments Development experiments
integration

Module

Development
experiments

Module

Development
experiments

Nastroje pro vyvoj software Distributed Version Control 30

Total anarchy

Repository
no.1

Repository
no. 2

Repository

no.5

Repository Repository

no. 4 no. 3

Nastroje pro vyvoj software Distributed Version Control 31

Links

® @Git documentation
= http://git-scm.com/doc

® Mercurial
= http://www.mercurial-scm.org/, http://hgbook.red-bean.com/

® Repository servers
= https://github.com/
= https://bitbucket.org/
= https://gitlab.com/

® Tools

= Git for Windows (http://msysgit.github.io/), TortoiseGit (Win),
SmartGit (http://www.syntevo.com/smartgit/)

= TortoiseHg (Mercurial GUI, Windows)
= SourceTree (https://www.sourcetreeapp.com/, Git and Mercurial)

Nastroje pro vyvoj software Distributed Version Control 32

Homework

® Assignment
" http://d3s.mff.cuni.cz/~parizek/teaching/sdt/

® Deadline
= 22.10.2018 / 23.10.2018

Nastroje pro vyvoj software Distributed Version Control 33

http://d3s.mff.cuni.cz/~parizek/teaching/sdt/

