Threaded Behavior Protocols*
Technical report

Jan Kofron, Tomés Poch, Ondiej Sery
June 27, 2008

Charles University in Prague
Malostranské nameésti 25
118 00 Prague 1
Czech Republic

{jan.kofron, tomas.poch, ondrej.sery}t@dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz

1 Introduction

Specification of software component behavior becomes more important with growing complexity
of components. A convenient specification can serve for both documentation and verification
purposes. Regarding the latter one, one has to choose a proper level of details to capture important
behavioral aspects but keep the model small. The aim of the software designer (who is interested
in verification of properties of the specification) is to balance the amount of information present
in the model and the size of the respective state space to keep the model practically verifiable.
Use of a proper formalism makes this task simpler.

1.1 Considered components models

TODO: frame, application, architecture, etc., informally substitutability, error freeness Having a
hierarchical component application, one of the facts we are interested in is whether the involved
components communicate correctly, i.e., without errors. Since the components are nested and each
composite component acts as a black box to its environment, i.e., the actions happening inside the
component are not exposed outside, one could suggest to reason about error freeness of a subtree
of the application component hierarchy. On the other hand, the error-freeness of the subtree is a
relative concept [1]—in an application the error may occur, while in another not. In other words,
the communication correctness is influenced by the context (environment/actual usage) of the
component. Therefore, the verification of absence of communication errors makes sense only after
the application is entirely specified.

Conversely, the substitutability should not depend on a particular environment. The motiva-
tion is the following: If the component developer wants to mark a new version of a component
as a replacement of the original (old) one, he/she cannot be aware of particular applications the
component is used in, therefore the substitutability should consider specification of these two com-
ponents only. If this is not feasible, on the other hand, re-verification of the entire application after

*This work was partially supported by the Ministry of Education of the Czech Republic (grant MSM0021620838),
the Grant Agency of the Czech Republic project 201/06/0770, and the Q-ImPrESS research project (FP7-215013)
by the European Union under the Information and Communication Technologies priority of the Seventh Research
Framework Programme.

component replacement also works. The original component is, however, not referenced anymore,
thus the term of substitutability becomes rather misleading.

1.2 Component behavioral specification

Recently, we created behavior models of several component Fractal [2] resp. SOFA [3] applications.
Our intention was to use model checking to detect communication errors in the models. The models
were specified by the formalism of Behavior Protocols [5] resp. Extended Behavior Protocols [4].
We focused on verification of behavioral compatibility of communicating components.

Several issues were identified with respect to the way the developer is forced to think when
crafting the specification. The main obstacle is the overall difference between specification and
imperative languages the developers are used to. Above all, the trace semantics does not corre-
spond well to the execution semantics of common programming languages. Next, the constructs
present in the specification language are not easy to grasp for a developer. These issues often leads
to an inappropriate specification either too general or even erroneous—the developers misuse the
specification language constructs when trying to model those from an implementation language.

1.3 Goals and structure of the paper

Having experience with specification and verification of software component behavior using BP
and EBP, we propose a new formalism built upon the original work and explain the motivation
for these changes. The proposed formalism is as close as possible to the common imperative
programming languages the developers are used to, but remains decidable. The intention is to
allow users to express their thoughts by the common means. Moreover, the notion of correctness
and behavioral subtyping is formally defined in a modular way to allow reasoning about different
properties.

The paper is structured in the following way: In Sect. 2, we present the syntax of the proposed
language, while in Sect. 3, we define first the underlying formalism; this is followed by definitions
of the most important notions—composability, substitutability, and error-freeness of instances
of Threaded Behavior Protocols (TBP). In Sect. 4, we point out the most important parts of
contribution of the proposed language. The paper is concluded by Sect. 5 where some directions
and ideas for future work are mentioned.

2 Syntax

The formalism for specification of software component behavior we propose in this paper is called
Threaded Behavior Protocols (TBP). From both syntax and semantics point of view, it is based
on EBP [4]. However, to keep the paper self-contained, we will describe it root and branch rather
than presenting it as a set of changes.

Now, we describe the syntax of Threaded Behavior Protocols (TBP). The basic structure of a
component specification in TBP is in Fig. 1.

2.1 Types

The types section defines enumeration types that are used within the specification. The types may
be used for declaration of method parameters and local variables, for instance:

states = {CARD_READER_ENABLED, CARD_READER_DISABLED}

2.2 State variables

The vars section defines state variables influencing the component behavior. The variables cannot
be accessed from other components (instances). Each variable declaration specifies a name, type,
and initial value. Later on, within the behavior section, any value of the same type can be assigned

component component_name {
types {
types_definition

vars {
variable_definition

}

provided {
provided_protocol

}

reactions {
method_reactions

}

threads {
component_threads’_activity
}
¥

Figure 1: Basic structure of TBP specification

to the variable, which is an atomic operation. Moreover, the control flow may then depend on the
stored value.

There is a special type of variables—muter. A mutex variable serves as a synchronization
object, upon which threads can synchronize, e.g., to achieve mutual exclusion. As an example,
consider the following variable and mutex definitions:

states state = CARD_READER_ENABLED
mutex m

2.3 Provisions

The provided section declares the intended use of the component in the sense of the calling order
of methods on its provided interfaces, the provided protocol. The provided protocol specifies
how the component should be used by its environment. The provisions section can be seen as
the assumption, which, when satisfied, results in reactions (i.e., calls of methods on required
interfaces) as specified in the reactions section. Violation of the protocol is checked and reported
as a communication error during verification/simulation. Since the provided protocol does not
perform (emit) any events on itself (all events are actually emitted by threads—see the section
about threads), it can be also seen as an observer only checking the correctness of the thread’s
work. As an example, consider the following provision specification:

(?CardReaderCtrl.enable()+?CardReaderCtrl.disable()) |*

This snippet specifies that the enable or (‘+’) disable methods may be called on the CardReaderCtrl
interface by any number of threads at a time in parallel (‘|+).

2.4 Reactions

The reactions section specifies reactions for particular method calls. For each method on each
provided interface, there might be a reaction. The reaction consists of method calls on required
interfaces, assignments to the variables, return, while, if and switch statements. Once the
method is invoked by a thread, the thread performs the actions specified by the reaction. As an
example of a reaction specification, consider the following spec snippet:

CardReaderCtrl.enable() {

state <- CARD_READER_ENABLED
}
CardReaderCtrl.disable() {

state <- CARD_READER_DISABLED
}

Here, the specification declares that in reaction to the enable method call, the value of the state
variable is set to CARD_READER_ENABLED and similarly in the case of the disable method.

2.5 Threads

With each component, a (possibly empty) set of threads is associated. All threads exist from the
beginning, no dynamic creation of threads is supported. The threads’ task is to issue method
calls on the component required interfaces (i.e., provided interfaces of other components). Thus,
a thread is a source of activity in the model. Within the threads section, the order in which the
threads call required methods and assign values to variables is specified. As an example consider
the following thread specification:

T1:
while(?){
if (?) {
!CardReader .PINEntered ()
} else {
!CardReader.CreditCardScanned ()
}
}

The thread specified by this snippet is able to call the PINEntered or, alternatively (‘+’), the
CreditCardScanned methods on the CardReader interface any finite number of times (‘x’).

2.6 Syntax in particular sections

As already mentioned, the purpose and character of the provision section is completely different
from the other sections. On the other hand, the threads and reaction sections both define behavior
in an imperative way. Thus, the grammar of the content of threads and reactions is shared, while
the provisions section has its own grammar.

2.6.1 Grammar of the provisions section

The grammar of the provision section is inspired by regular expressions. This is motivated by the
fact, that the meaning of the provisions section is the set of method call sequences.
The basic building block of the provision expression is a method call.

7interface.method (params)
7interface.method (params) : return Value

The method call might contain a return value, when it is important for behavior. Common
[e I

regular operators (‘;’, ‘«’, ‘+’) are used to construct more complex expressions, while parentheses
refine the priority of operators. The formal definition in EBNF form is in Appendix A.

2.6.2 Grammar of imperative parts

Conversely, the imperative parts resembles the imperative languages. Composed statements like
while, if and switch are available. However, in order to allow non-deterministic choices, question
mark is allowed instead of a condition or expression in the switch statement. There are three basic
statements: method call on a required interface (!interface.method(params)), assignment to
a state variable (var <- constOrVar or var <- !'interface.method(params)) and the return
statement (return (constOrVar)).

3 Semantics

In this section, we describe meaning of the TBP models whose syntax is mentioned above. After
basic definitions, we define the difference between TBP types and TBP instances', which is impor-
tant for correspondence of TBP with SOFA metamodel. Later, we define the notion of composition
and substitutability and the relation to each other.

Definition 1 (Guards). Let Var be a set of variables, Val a set of values. A guard is a finite
expression over Var and Val generated by the following rules:

e v=1[veEVarle Valis a guard,
e v#£1[,veVarl e Val is a guard,
e if X and Y are guards, then X AY and X VY are also guards.

Definition 2 (Labeled Transition System with Assignments). A Labeled Transition System with
Assignments (LTSA) is a tuple (S, so, F, T, 2, Var, Val), where S is a set of states, so € S is the
initial state, F' C S is a set of final states, 3 a set of labels, Var a set of variables, Val a set of
values. Let G be a set of guards over Var and Val. Then T'C S x G x ¥ x S is a transitions
relation.

Definition 3. A threaded behavior protocol a is a five-tuple (X, P, R, T, M), where:

o ¥ = (X, Xprov, Lreq) denotes sets of all, provided, and required method names used in the
protocol, Xp,0p N Yreq = () and Yprov U2req C Mqui- Moreover, only method names from X,
are allowed in P, R, and 7. Where convenient, we use ¢zt = prop U Xpeq to denote the
set of all externally visible method names and ¥;,; = X411\ Xest for internal only names.

o M = (Myar, Myputes) is a pair of sets of variables and mutexes representing internal state
both being initialized with a value.

e P is a set of provisions { Py, P,, ..., P,,} of a form P; = (filter’: traces™), where filter’ C
(Xint U Zprow) specifies methods observed by the provision and traces™ specifies a set of
allowed finite sequences of events corresponding to methods in filter’:.

e R is a partial function: (X U Xpr0y) — LTSA(s,,,ux,.,),m Tepresenting a mapping of
method names to their reactions in a form of LTSA. LT'SAs ps denotes a set of all LT'SAs
using only methods from ¥ and variables and mutexes from M.

o T'is a set T1,Ts,..., Ty, of threads, where T; € LTSAxs,, us,.,),m is a LTSA specifying
behavior of the thread.

Moreover, there is an undefined protocol in T'BP denoted by L.
TODO: komentar k definicim?

3.1 Implicit binding

When designing the behavior specification of a component, the designer uses identifiers of inter-
faces and method names from the component’s frame. In contrast, having the bindings among
components reflected as equality of event names (i.e., implicit binding via naming), allows simpler
definition of the formalism. Therefore, we distinguish between component types, being the output
of the component designer, and component instances, being the result of the renaming operation
(implicitly) reflecting the bindings among components.

1We do not explicitly point out the importance of this as it is beyond the scope of this paper.

3.2 Provisions

This section describes the semantics of the expressions present within the provided section. As
mentioned in the section about syntax, the provided section is intended to specify the set of traces
of method calls that may appear on the associated component frame.

Basically, each expression within the provided section corresponds to a (nondeterministic)
finite automaton in a similar way as a regular expression does. To clarify this relation, we describe
transformations of non-regular operators that appear in these expressions to obtain a normal
regular expression. In addition to regular operators (‘;” for sequencing, ‘+’ for alternative, ‘x’ for
finite number of repetitions) there are several special (parallel) operators:

e The (and-)parallel operator. ‘A | B’ yields parallel composition of the expressions A and B,
i.e., it generates alternative of all possible interleavings of an event sequence from A with an
event sequence from B. For instance, (a;b) | (¢;d) is equivalent to (a;b;c;d) + (a;¢;b;d) +
(a;c;d;) + (c;dsasb) + (csa5d;b) + (¢ a5 b3 d)

e The or-parallel operator. ‘A || B’ is equivalent to ‘A + B+ (A | B)'.

e The limited reentrancy operator. ‘A |2’ for x € N is equivalent to ‘A || A || ... || A’ where
there are x occurrences of A within the expression.

e The (full) reentrancy operator. ‘A |’ stands for ‘A || A || A]|....

Having defined meaning of all the special operators, the correspondence of a provided ex-
pression P without any full reentrancy operator to a nondeterministic finite automaton Ap is
straightforward. Moreover, the full reentrancy operator can be rewritten using the limited reen-
trancy operator once the composition is complete and the level of parallelism (bounded by the
number of threads) is known. The expression ‘A |*’ can be then substituted by ‘A |2'2, where
is a constant derived from the number of threads within the specification.

Later on, during the simulation/verification, Ap is used to verify whether the sequence of the
events that appear as the consequence of thread execution restricted to the method names present
in the filter” set lies in the language accepted by Ap (i.e. it is allowed by the provisions).

3.2.1 Open questions

Provisions are trace oriented, however, it is be desirable to preserve information about thread
assignment to the calls. For example, in the provision: ?a{?z};?c |7z, the desired semantics is
that the calls to a, ¢ and both z’s can be issued by different threads (even to a and c¢), while
providing that the call to a can return only after return of the call to x which was mapped to the
first occurrence of x in the expression. This semantics is desired but neither specified above nor
implemented yet. This is due to the fact that preserving the information about thread assignment
to calls in provisions would blow up the state space by a number of similarity classes (thread
assignment permutations). For optimizing out the state space blow up, we have no satisfactory
solution yet.

Just to demonstrate the difference, the following provision: P = (7a; ?x;?b) | (?x; ?¢) is violated
by the two threads: T} =la;!z;!c and Tb =!x; b, if one achieves postponing the call to a after start
of the T call to x and then postponing 75 return from x after 77 call to x. Note that the postponing
can be achieved using the local variables. When correctly maintaining the thread assignment to
provision calls, the erroneous situation would be detected. In contrast, without the mapping, the
situation is considered error-free.

Regardless how unlikely and artificial such a specification may look, it is allowed by the for-
malism and therefore should be targeted in the future by at least detecting the error patterns.

2Note that A | is equal to Ax |, while A |z is not equal to Ax |z in general.

3.3 Threads and reactions

The thread and reaction section contains description of the autonomous behavior. In contrast to
the provisions, which only observe the behavior and signalize errors, threads along with reactions
define the behavior itself. Any nondeterminism present in threads and reactions is understood
as an internal choice of the behavior. For this reason, semantic of a thread is LTSA with final
states and labels in a form of a and a|, where a € ¥, assignments to local variables and guards
referencing the local variables.

The set of variables Var of the LTSA associated with a thread contains all variables from M.
In case of LTSA associated with a method, Var contains parameters of the method.

Regarding the composite statements (if, while, switch) and sequence operator (‘;’) , the
transformation of the behavior description into LTSA is, again, inspired by the transformation of
regular expression into finite automaton. The sequence operator (‘;’) corresponds to the concate-
nation of LTSAs, if and switch corresponds to the alternative and while statement is related
to the repetition. The difference is, however, in guards. If an alternative statement contains a
condition the corresponding transitions are equipped with corresponding guards. Similarly, the
backward edge coming from the while statement may contain a guard. In case of nondeterministic
statements (inner choice - while(?), if (7)), the guard is always true.

Finally, the synchronized block (sync(mtx) . ..) adds a new initial state to the LTSA connected
by a transition to the origonal initial state. The new transition is labeled by the guard ensuring
that the associated mutex is unlocked when the transition is used. The action associated with the
transition locks the mutex. The result LTSA has just one (newly added) final state. There is an
transition coming from each original final state labeled by an action unlocking the mutex.

As the non-deterministic choice is supposed to be internal choice of the component, no deter-
minization is performed.

3.4 Composition

Before defining the composition itself, we first make a simple observation. The names from the
sets Yint, Myar, and M0 are not visible to the outer world and thus should not influence the
result of the composition. In other words, a protocol defines the same behavior under arbitrary
renaming of ¥, Myar, and M,uie.- To prevent name clashes, the composition operator will use
the following substitution:

Definition 4. Let N and N’ be sets of names. Then O y_. x+ denotes a substitution, which to all
names n € N assigns a name nOpy_. - such that nOpy_.n» ¢ N’'. Moreover, the substitution does
not assign the same target name to different source names: Vn,m € N : nOn_.n’ = mOn_.n =
n=m.

Using the substitution, the composition operator can be defined as follows:
Definition 5 (Composition). Let a = (X', P", R, 7', M’),b = (X", P",R",T",M") € TBP. 1If:
L4 Z;)'I‘O’U m Z;)/'V‘O'U = @

then a ® b= (%, P, R, T, M), where:

o X = ((ZuOUXau), Cprov U Zpron)s (Breq U Eeg) \(Zipron U Zi5ro0))

prov prov req req prov prov

e P=POUP
e R=ROUR"
o T=T'0UT"
e M =(M,O©UM!

var var?

M/ﬁ%utea:@ U M#L

utea:)

° O= @(zgmuM;muM;,Mw)ﬁ»(z/ Uz UM UM

ext all var mutem)

Otherwise, a ® b =1. Moreover, Va € TBP : a® 1=1.

In other words, the result of composition is well-defined if the two protocols do not provide a
method with the same name (as this would yield a binding of a single required interface to multiple
provided interfaces, which is not supported). The substitution © is used to prevent collision of
internal names from X;,¢, Myq., and M, utem-

It is worth noting that there are two major options of how to define the composition. First
and for the time the favored one is making union of both sets of reactions. The second option
is to perform inlining of the reactions of the bound protocols into threads and reactions of the
calling protocols. Since the inlining would imply immediate prohibition of recursion of any type,
postponing the problem to a later phase (the ErrFree predicate) seems to be a reasonable choice.

Definition 6 (ErrFree). ErrFree(S), where S is a TBP specification of a component architec-
ture, is a predicate that holds if there is no communication error inside S. ErrFree(L) does not
hold.

The definition of the ErrFree predicate is intentionally very general. In fact, the predicate
can be precisely specified for testing of a wide spectrum of properties of component architectures.

3.5 Restriction

In order to be able to restrain visibility of certain method names, as in the case of enclosing a
component architecture into a frame, we define also a restriction operator over TBP.

Definition 7. Let a« = (3,P,R,T,V),a € TBP and M be a set of method names. Then
a’ = R(a,M)=(X,P,R,T,V) is a restricted protocol, where ¥’ = (Za11, Lprov N M, Xpeq N M).

The following example demonstrates a typical use of the composition and restriction operators.

Example 1. Let A, B, and C be components forming a composite component X and a, b, ¢ their
protocols, respectively. Then behavior of the component X is described by the protocol R((a ® b @
¢), M), where M contains only names of methods appearing on the provided and required interfaces
of X. Note that there is no need to use parentheses and the order of protocols is also irrelevant as
the composition operator @ is both commutative and associative.

3.6 Substitutability

TODO: reformulate: Having a working component application, we can ask, whether its partic-
ular component can be replaced by another one. We do not restrict the substitutability to be
parametrized by a component environment, since this is no substitutability any more, but rather
a question whether a new component will work at a particular place not taking the original com-
ponent into account. So, the substitutability, to be both reasonable and useful relation, should be
defined regardless of the environment:

Definition 8 (Substitutability). Let A, B € TBP. We say that A is substitutable for B, denoted
by A<s B,if VE € TBP : ErrFree(E ® B) = ErrFree(R(E, (X8 UXE) o A).

prov req
Note, that the substitutability definition is parametrized by particular ErrFree predicate.
The ultimate question is whether there is a communication/composition error at the topmost
level within the application component hierarchy. Therefore, to make it work, we do not want the
frame protocol to be substitutable for its architecture, but, conversely, the component architecture
to be substitutable for the component frame. Let us demonstrate this observation by the following
example.

Example 2. Let A and B be specifications of primitive components. Further, let A =7a+7b
and B =7a+7b+7c. Assuming that providing more functionality is not bad, then, obviously, B is
substitutable for A (B < A) but A is not substitutable for B (A & B). In a component hierarchy,
to make this work, the only way of arrangement is that B is the protocol of the architecture and A is
the protocol of the frame, not vice versa, and hence that the component architecture is substitutable
for the component frame.

3.7 Simulation semantics TODO: REWRITE

Within this section we define the simulation semantics of a TBP specification.

3.7.1 Inlining

Having a specification a = (X, P, R, T, M) € TBP, we first perform the inlining of the reactions
into the thread specification thus obtaining a “complete program”:

Definition 9 (Parameter substitution). Having a reaction i.m(paramy, ..., paramy){q} € R, we
define a substitution of a parameter ¢ by a value val

Definition 10 (Inlining). Assuming a specification a = (X, P, R, T, M) € TBP, inlining inheres
in replacement of all appearances of method calls in the form var < —li.m(valy, ..., val,) such that
there exist r = i.m(paramy, ...,paramy,){q} € R by li.m T;g[param/vall; ?i.m | in all threads. All
method calls are hereby iteratively replaced. Assuming that the inlined specification is denoted
by a’, we write I(s) = s'.

Note here that recursion (even indirect) has to be disallowed to make the inlining process finite.

Each thread t € T of an inlined specification can then execute. That means that it performs the
actions from its specification in the order the specification declares, starting from the beginning.
The execution of multiple threads is then an interleaving of events of particular threads. More
formally, each thread corresponds to LTSA, where transitions are labeled by the events the thread
performs. Moreover, a guard may be associated with each transition. The transition is allowed to
be executed if the guard condition holds.

First, each action (executed event) corresponds to a transition from a state a to a state b
labeled by the action. The meaning of standard regular operators (‘;’, ‘+’, ‘«’) is clear and thus
we focus on the special operators. Recall now, that each variable and mutex v € Myqr U Mpyuter
holds at a particular point a single value. Since the transitions are performed atomically, the value
of each variable at each state is uniquely determined by the transition history of all threads. First,
we look at the switch statement. Its syntax takes the form:

switch (v) {
case vall: protl
case val2: prot2

case valn: protn
default: protd
}

The switch statement corresponds to the alternative of particular case branches, however, the
branch is not selected nondeterministically, but the one following the case statement with the
value that is held by the variable var is selected for execution. If there is no such a branch (with
respect to the value of the variable), the default branch is selected. Formally, for the i-th branch,
with all transitions from the initial state of the branch there is a guard of the form “var = val;”.
The default branch is then guarded by a conjunction of inequalities to values stated in the other
branches.

Next, the while statement takes the following syntax:

while (var == val) {
prot
}

The while statement is basically a repetition where the “cycle” transition is allowed if and
only if the condition at the while keyword holds, that is, if the variable var holds the value val.
In the other case, the transition is not allowed and the while statement is accomplished. Again,
formally, there is a guard of the form “var = val” associated with the “cycle” transition and a
guard “var # val” associated with the ending transitions.

3.8 Synchronization model

As mentioned before, M in a TBP contains a set of state variables M,,, and a set of mutexes
Mnuter- While the state variables serve for storing the component state, mutexes are used to cope
with the synchronization. Mutexes are mainly used to achieve mutual exclusion of execution of
multiple threads. To denote mutually exclusive execution of a part of thread actions, the part of
the specification is enclosed within the “sync(mutex)” statement as follows:

sync (mutex) {
prot
}

The sync keyword is allowed in the reactions and threads sections of a TBP specification. The
meaning with respect to the shape of LTSA is the following: a new state s is added to the LTSA
corresponding to prot and a new transition ¢ leading from s to the initial state of prot is added
as well. There is a guard of the form “mutexr = 0" associated with ¢ and the label of ¢ is “mutex
<-17. Since the transitions are executed atomically, the test-and-set semantics is hereby assured.

To further simplify the specification construction and to reflect the synchronized methods in
e.g., the Java programing language, we define a syntactic abbreviation. The method bodies inside
the reactions section can be denoted as synchronized:

sync ml {
reaction

}

The meaning of the specification is the following;:

ml {
sync (mc) {
prot
}
}

Where mc is a mutex associated with the component instance.

3.9 Correctness properties

Recall that the ErrorFree predicate has been intentionally defined in a very general way. It is
used to decide whether a protocol contains errors or not. Its concrete interpretation may vary,
forming thus an extension point of the formalism.

In the following, we present a possible interpretation of the ErrorFree predicate (BAN AFree)
along with a sketch of how to evaluate it algorithmically—how to perform the verification. Later,
we describe a method to decide the substitutability relation based on BAN AF'ree.

3.9.1 Checking BAN AF'ree

We are basically concerned with communication errors, i.e., violating provisions of a protocol and
thus breaking the contract. Two types of provision violations are identified. (i) Bad activity, i.e.,
a thread calls/returns from a method, while there is a provision observing the method, which
however forbids the call/return at this point. A special case of this error is calling a method which
does not have an associated reaction (i.e., calling an unbound required interface). In other words,
bad activity is an error resulting from active violation of the provisions, either explicit or implicit,
as in the second case. (ii) No activity, i.e., all threads have finished, while there is a provision
still waiting for a method call to be issued. (The automaton representing the provision is not in
its final state.) The no-activity error represents a situation in which the provisions are violated
passively by not finishing a pending work (e.g., not releasing a database cursor).

The BAN AF'ree predicate then holds over those protocols whose behavior does not result in
any communication error. In order to decide this, the active behavior of the protocol specified by
threads and reactions is simulated along with automatons representing all the provisions.

So far, we are considering just reachability properties.

10

3.9.2 Checking substitutability

Knowing how to evaluate the ErrorFree predicate, we can move to the more difficult task of
deciding the substitutability relation. Having a,b € T BP, the question to decide is whether a < b
or a # b. In fact, it suffices to be able to decide a weaker (implementation-oriented) relation <mp
provided that <imp € <, and <jmp is reasonably close to <. The first requirement implies that
any two protocols in the relation <y, are also in the original relation <. Therefore, checking only
<impl 15 correct in a sense, that no unmatching components can be identified as substitutable.

The basic idea of the algorithm is in traversing both state spaces of a and b using the same
events, simulating the environment and looking for chances to cause an error in communication
with a while sustaining error free communication with b. In other words, the algorithm looks for a
witness of @ £ b. While traversing, the algorithm maintains supersets of states reachable in both
a and b by using the same observable events from Y..;.

3.9.3 Dealing with full reentrancy

It is clear that in presence of the full reentrancy operator, a provision cannot be represented by
means of a finite automaton (as the reentrancy operator can be used to express the language of
correct bracketing, which is not regular). On the other hand, this does not mean that full reen-
trancy is always infeasible. For example, in the case of ErrorFree, the composition is considered
to be closed and therefore, the full reentrancy operators are rewritten using the limited reentrancy
operators. The limitation is derived from the total number of threads within the composition.

Full reentrancy constitutes a bigger challenge for deciding the substitutability relation. This is
due to the fact that the definition of substitutability quantifies over all environments and therefore
no fixed upper bound on the number of threads present in the composition can be assumed.

This can be approached in two different ways. First, we can define a thread-limited version
of the substitutability relation: <*, which would quantify over only those environments with the
number of threads lesser or equal to z. A concrete x could be either estimated or derived from
available information about the concrete environment.

Second, one could think of finding similarity classes that would ensure that Jx such that
Vo' >z :a<"b = a<® band hence a <* b = a < b. This second approach, however, is
just an idea for further research, while the first one is an applicable (brute force) solution.

4 Conclusion

In this paper, we presented a new specification language for behavior of software components.
Having in mind the issues experienced during specification of larger case studies, we based the
formalism upon Extended Behavior Protocols, which turned out to be a reasonable specification
platform if one is interested in behavioral compliance. Most problems of EBP were caused by
almost nonexistent threading and synchronization models. Therefore, we included the thread and
mutexes as first-class entities into the proposed language—Threaded Behavior Protocols (TBP).

TBP are closer to code in the following two aspects: (i) The extraction of a part of a model
from the component code is simpler due to separation of method reactions from the specification of
provisions, and (ii) the verification of code-to-specification compliance has a more straightforward
meaning than in the case of (E)BP.

5 Future Work

As future work, we plan to simplify a given TBP a (representing an architecture) to a TBP b
such that a <4 b. Preferably, b would be in a sense minimal protocol exhibiting the same visible
behavior as a. Probably even a =, b would be a nice property.

Also, an implementation of a tool performing either or both of substitutability and ErrFree
verification is to be done.

11

References

[1] J. Adamek and F. Plasil. Erroneous architecture is a relative concept. In TASTED Conf. on
Software Engineering and Applications, pages 715-720, 2004.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An open component
model and its support in java. In I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C.
Wallnau, editors, CBSFE, volume 3054 of Lecture Notes in Computer Science, pages T—22.
Springer, 2004.

[3] T.Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced Features in a Hierarchical
Component Model. In SERA, pages 40-48. IEEE Computer Society, 2006.

[4] J. Kofron. Behavior Protocols Extensions. PhD thesis, Charles University in Prague, 2007.

[5] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE Transactions
on SW Engineering, 28(9), 2002.

12

A Grammar

This appendix contains the formal description of the TBP syntax in the EBNF form.

tbp = "component", component_name, "{",
"types", "{", [{ type } 1, "}",
"VaI'S", I|{l|, [{ var }], ||}||’
"provisions", "{", [{ provision } 1 , "}",
"reactions", "{", [{ reaction } 1 , "}",
"threads", "{", [{ thread }], "}",

ll}ll;
component_name = idf;
// Declarations

type = idf, "=", "{", idf, [{ "," idf } 1, "}";

var = idf idf, "=", idf |
"mutex", idf ;

provision = [idf] , [’(’,method_name_list,’)’], "{" p_protocol "}";
methodn_name_list = method_name, [{ "," method_name }]

reaction = [annotation], method_decl, "{", imperative, "}";

thread = [idf] , "{", imperative, "}";

annotation = "@",idf, [’(’,{idf, "=", idf},’)’];

Provisions grammar:

p_protocol = p_alt
p_alt = p_seq, [{ "+", p_seq } 1;
p_seq = p_par, [{ ";", p_par }];
p_par = p_opar, [{ "|", p_opar } 1;
p_opar = p_rep, [{ "II", p_rep } 1;
p_rep = ap_term, "*" |
ap_term, "|*" |
ap_term, "|" {DIGIT} |
ap_term
ap_term = [annotation], p_term;

p_term = "(", p_protocol, ")" | p_event;

p_event = "?" method_call, [":", idf] | "NULL"

Grammar of imperative parts:

imperative = ar_stmt, [{ ";", ar_stmt}];
ar_stmt = [annotation], r_stmt;

r_stmt = r_while |
r_switch |
r_if |
r_synchronized
r_event;

r_switch = "switch", "(", value, ")", "{", r_switchbody, "}" |
"switch", (v, ", wyn, ow{w, r_nd_switchbody ¥;

r_switchbody = r_case, [{ r_case } 1, ["default" , ":", "{" , imperative, "}"];
r_case = idf, ":", "{", imperative, "}";

13

r_nd_switchbody = r_nd_case , [{ r_nd_case }];

r_nd_case = "case" , ":", "{", imperative, "}";

r_while = "while", "(", cond , ")", "{", imperative, "}";

r_if = "if", "(", cond , ")" , "{" , imperative , "}" ["else" , "{" , imperative , "}" 1;
r_synchronized = "sync", "(", idf, ")", "{", imperative, "}";

r_event = "!", method_call | r_assign | r_return | "NULL"

r_assign = idf, "<-", value;

value = idf | "!", method_call ;
r_return = "return", idf ;
cond = idf, "==", idf | "?"

method_name idf, ".", idf;

method_decl = method_name, "(", parlist_decl, ")"
method_call = method_name, "(", parlist ,")"
parlist_decl = [idf, idf, [{ ",", idf, idf } 1 1;
parlist = [idf, [{ ",", idf } 1 1;

idf = CHAR, [{ DIGIT | CHAR | "_" } 1;

14

