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Abstract

Protocol State Machines (PSM) in UML 2.0 [13] describe valid sequences of opera-
tion calls. To support modeling components, UML 2.0 introduces a Port associated
with a set of provided and required interfaces. Unfortunately, a PSM is applica-
ble only to a single interface, either a provided or required one; moreover, nested
calls cannot be modeled with a PSM. Furthermore, the definition of protocol con-
formance is rather fuzzy and reasoning on this relation is not possible in general;
thus reasoning on consistency in component composition is not possible with PSMs.

Behavior Protocols [17] capture the behavior of a component via a set of traces.
A textual notation similar to regular expressions is provided to approximate the
behavior with a regular language. In [1,17], the compliance relation and consent
operator are defined to reason on consistency of component composition; a verifier
tool [18] is available for the compliance relation.

In this paper, we propose the Port State Machine (PoSM) to model the commu-
nication on a Port. Building on our experience with behavior protocols, we model
an operation call as two atomic events request and response, permitting PoSM to
capture the interleaving and nesting of operation calls on provided and required
interfaces of the Port. The trace semantics of PoSM yields a regular language. We
apply the compliance relation of behavior protocols to PoSMs, allowing us to rea-
son on behavior compliance of components in software architectures; the existing
verifier tool can be applied to PoSMs.
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1 Introduction

1.1 UML 2.0: State Machines and Protocol State Machines

The Unified Modeling Language (UML) [12] features StateMachines based on
the widely recognized State-chart notation [8]; the execution of a State Ma-
chine can be observed in terms of events accepted and actions executed (po-
tentially overlapping). The upcoming new version of the standard, UML 2.0
[13], introduces a specialization of State Machine, the Protocol State Machine
(PSM), which can be used to model the ordering of operation calls on a Clas-
sifier (typically an Interface). Moreover, UML 2.0 introduces the concepts
StructuredClassifier and EncapsulatedClassifier, providing support for modeling
internal structure and featuring Ports; a Port is associated with a set of pro-
vided and required interfaces. Based on these concepts, a Component may
be captured in a UML model, employing a possibly hierarchical component
model; the external communication of the component is encapsulated in the
component’s Ports.

In component-based software engineering, a basis for reasoning on “com-
patibility” of software components is highly desirable in order to validate soft-
ware architectures and define substitutability of components.

UML explicitly considers “conformance” of PSMs; however, the role of
conformance is limited to explicitly declaring, via the ProtocolConformance
model element, that a specific StateMachine (possibly a PSM) conforms to a
general PSM. Note that UML defines the semantics of protocol conformance
only partially (based on structural equivalence and matching guards on tran-
sitions); it is not clear under which circumstances protocol conformance may
be declared and thus, it is not feasible to automatically decide on protocol
conformance.

UML employs the protocol conformance in the Components framework,
requiring realization of a Component (possibly a StateMachine specifying the
component) to be conforming with specifications of all its Interfaces. Moreover,
when a required interface IR is connected to a provided interface IP , the PSM
of IR must be conforming to the PSM of IP . However, with no exact definition
of protocol conformance, validating component architectures is not feasible.

1.2 Motivations

Although the State Machines in UML permit modelers to clearly communicate
ideas to each other, they are not suitable to be used as the basis for defining
“compatibility” of components. The observable behavior of a component is
typically captured as communication on its provided and required interfaces
[4,5,6,15]. However, in UML State Machines, significantly different mecha-
nisms are employed to specify events received and sent. Events received (in
case of a component corresponding to operations on the provided interfaces),
are captured as triggers associated with transitions of the state machine. A
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State Machine uses Activities to specify its responses to events received (i.e.,
events sent and internal actions). An Activity (a Petri-net like abstraction
in principle) consists of Actions, some of these actions correspond to sending
events. However, the spectrum of actions is rather huge and it is not possi-
ble to establish a one-to-one correspondence between the triggers and actions
related to a communication; thus, it is not possible to derive the behavior
resulting from the composition of communicating components (exchanging
events) specified with State Machines.

A Protocol State Machine (further PSM), a refinement of the (generic)
behavioral State Machine, imposes a restriction on its transitions, requiring
that no Activities are associated with the execution of the PSM. Consequently,
only one “direction of communication” can be captured with a PSM. The
communication is specified independently of the direction of communication,
only the way an interface described by a PSM is used in a Port determines
whether the events captured by the PSM are received (for provided) or sent
(for a required interface); a PSM cannot describe the interplay of events on
the provided and required interfaces.

UML State Machines employ the run-to-completion semantics, i.e., only
after a transition of a State Machine completes can another event be processed.
Thus, while executing a method (modeled, e.g., as the effect activity of the
transition), no other event may be processed by the State Machine, i.e., no
other method call may be accepted. Thus, State Machines cannot capture
interleaving of calls (several incoming calls processed at the same time), and
neither nested calls (e.g., a call-back or statically limited recursion), nor they
support (unlimited) recursion.

Surprisingly, the situation is no easier in PSMs – although no activity cor-
responding to the operation called is included in a PSM, a transition completes
only after the method implementing the operation completes. Therefore, no
call may be accepted before the call being processed completes and thus, the
same restrictions on call interleaving and nested calls apply to PSMs. Conse-
quently, although a PSM specifies a sequence of operation calls, the commu-
nication on a Port, associated with provided and required interfaces described
by PSMs, cannot be captured with traces for further behavioral reasoning, due
to the non-atomicity of the events (operation-call) in the sequences described
by the PSMs. Moreover, the descriptions cannot capture nesting and inter-
leaving of calls on the Port, although this is a common pattern in component
communication.

Considering the lack of well-defined semantics, establishing a rigorously de-
fined compatibility relation upon the behavior of PSMs is not feasible. Among
others, UML assumes a constraint language to be used for guards of transi-
tions, but no constraint language is prescribed; OCL is provided only as one
of the options. Moreover, even when assuming OCL to be the only constraint
language permitted, such a relation would hardly be decidable for the following
reasons: (i) OCL expressions may access the attributes of the classifier, i.e.,
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an internal state with potentially unlimited state space and (ii) Events may be
deferred and processed later, thus the automaton gets a stack (though no se-
mantics is given for the order of retrieval; thus the event pool rather resembles
a bag). Here, the consensus is that verification of compliance is feasible only
on regular automata (or other abstractions with equivalent expressive power).
In certain cases, the relation may be decidable for a context-free grammar /
stack automaton; however, actually evaluating (computationally) such a re-
lation is likely to be unfeasible in general. A compliance relation is typically
defined on regular languages, e.g., a decidable relation is defined in [17]; the
work on the consent operator [1] provides an alternative approach [2]. Note
that the approach taken in [10,11] also uses a subset of statecharts that can
be converted to a finite LTS.

In case a trace model can be defined for the sequences of events described
by a state machine (here, it is essential that the events are atomic), reasoning
on compliance may be possible. When defining behavioral compliance, we
see as important that (i) compliance is based only on the behavior described
and not on the structure of the specification (ii) compliance is unambiguously
defined (iii) deciding on compliance can be achieved in an automated way.
Unfortunately, none of these is the case for ProtocolConformance defined in
UML 2.0 (as discussed in Sect. 1.1).

Last but not least, we miss a layer of description between a PSM (focused
on a single interface) and a behavioral State Machine specifying a component,
i.e., a layer suitable for specifying communication on a Port (of a component).

Thus, the issues we identified are: (i) State Machines in UML do not
capture interleaving of sent and received events. (ii) Composition of State
Machines is not possible (iii) The form State Machines use does not permit
establishing a decidable compliance relation. (iv) A specification mechanism
is missing to capture the communication on a Port.

1.3 Goals and Structure of the Paper

In [17], our research group developed Behavior Protocols, modeling behavior
of agents as traces of atomic events. Applied to the SOFA component model
[15], behavior protocols capture the ordering of operation calls issued and han-
dled by a SOFA component. Nesting of other events (possibly also operation
calls) within an operation call is supported. Moreover, a decidable compliance
relation is defined; a verifier tool [18] for checking this relation is available.
SOFA is a hierarchical component model; a component (either primitive or
composed) communicates with its neighboring components via a set of pro-
vided and required interfaces. The abstraction of a software component, as
considered in SOFA, employs a set of features comparable to those available
in UML 2.0 Components.

Considering the motivations discussed in Sect. 1.2, we propose Port State
Machine (PoSM) with the following goals: (1) Provide a notation that allows
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to capture interleaving of events sent and received (by a Port of a Component)
and support nested calls in such a way that the behavior can be captured with
a trace model based on atomic events. (2) Moreover, a verifiable compliance
relation should be defined for PoSMs.

This paper is structured as follows: Sect. 2 introduces the Port State
Machines (PoSMs), in Sect. 3, we show how composition verification can be
achieved with PoSMs; a case study follows in Sect. 4. Sections 5 and 6 evaluate
the contribution, discuss related work and line out future research; the paper
concludes in Sect. 7.

1.4 Note on Conventions Used

In this paper, PSM stands for Protocol State Machines (introduced by UML
2.0), while PoSM (at convenience pronounced “possum”) stands for Port State
Machines, proposed in this paper. A sans-serif font is used to distinguish
UML metamodel identifiers (names of packages, metaclasses, associations and
attributes).

2 Port State Machines

We propose Port State Machines, building upon the UML 2.0 Protocol State
Machines. To model operation calls (inherently non-atomic) with atomic
events, PoSMs capture an operation call with two events, request (correspond-
ing to start of the operation call) and response (completion of the opera-
tion call). Moreover, PoSMs explicitly distinguish between sent and received
events. Here, an operation call handled on a provided interface is represented
by a received request event and a sent response event; in a similar way, an
operation call issued on a required interface is represented by a sent request
event and a received response event. To hide such technical details from the
modeler, PoSM notation defines convenient shortcuts. In Fig. 1, a Port State
Machine explicitly specifies the request and response events, while in Fig. 3,
the same behavior is described with the notation shortcuts (these will be de-
scribed in Sect. 2.3).

2.1 PortStateMachine Metamodel

We define PortStateMachine as an extension of UML 2.0 ProtocolStateMachine,
employing the UML 2.0 extension mechanisms. In Fig. 2, we show the newly
introduced metaclasses PortStateMachine and PortTransition, as well as the
related classes of the UML StateMachine specification to provide context for
our extension.

PortStateMachine is defined as a subclass of ProtocolStateMachine. Thus, a
PoSM contains one or more regions; a Region contains vertexes and transitions.
A Transition connects a source vertex to a target vertex. A Vertex may be a
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 ?Clerk.deposit^

 !DB.addBalance^

 ?DBNotify.newBalance^

 !DBNotify.newBalance$

 ?DB.addBalance$

 !Clerk.deposit$

 !Log.logDeposit^

 ?Log.logDeposit$

LogSent

LogConfirmed

LogReady

RecordingDeposit

cd1

cd2

ab1

nb1

nb2

ab2

 abfin  logfin

 fin

Fig. 1. Port State Machine with explicit request and response transitions

PseudoState or a State. A PseudoState is a syntactic construct to model entry
and exit points of regions.

A State may contain zero or more regions. A State not containing any
region is a simple state. FinalNode is a specialization of a State representing
the completion of a region; a FinalNode may not contain any regions or have
outgoing transitions.

A State containing one or more regions is a composite state, a syntactic
construct to provide hierarchical grouping of states. When a simple state is
active, all its containing composite states are active. In an active composite
state, one of its substates is active.

A State containing more than one region is an orthogonal state. Orthogonal
states model concurrent execution; in an active orthogonal state, a substate
is active in each of its regions and a transition may be taken in any of the
regions.

Example 2.1 In Fig. 1, RecordingDeposit is an orthogonal state; the calls
DB.addBalance and Log.logDeposit progress in its orthogonal regions inde-
pendently.

A PortTransition represents a single atomic communication event. Port-
Transition is a subclass of ProtocolTransition (which in turn is a subclass of
Transition). A PortTransition must have exactly one trigger; the trigger must
be a CallTrigger and must refer to an Operation of an Interface of the Port as-
sociated with the PoSM. PortTransition introduces two additional attributes,
both of an enumerate type: OperationCallPart captures whether the transition
represents the request or response part of the operation call. CommunicationDi-
rection specifies whether the event is received or sent, its value must be sent
for a request on a required interface or a response on a provided interface, and
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received in the opposite cases (response on required interface or request on a
provided interface).

Example 2.2 In Fig. 1, transition from LogReady to LogSent denotes send-
ing a request for operation Log.logDeposit, while the ongoing transition to
LogConfirmed denotes receiving the response for this operation.

With the goal to provide trace semantics and facilitate a compliance rela-
tion (as discussed in 1.2), PoSMs introduce the following additional restrictions
on PortStateMachine instances and its contained elements:

(i) A transition in a PortStateMachine must be either a PortTransition or
a ProtocolTransition; a transition that is not a PortTransition may not
specify any triggers, i.e., can only accept the completion event. A Port-
Transition may only originate in a State (but may target a PseudoStates).

(ii) A transition in a PortStateMachine may not specify any constraints – its
guard, preCondition and postCondition associations must be empty.

(iii) The deferrableTrigger association of each State must be empty.

(iv) Only one transition is taken for a single occurrence of an event, even when

PortStateMachine

PortTransition
+communicationDirection: cdKind
+operationCallPart: ocpKind

ProtocolTransition
(from ProtocolStateMachines)

<<enumeration>>
cdKind

 sent
 received

Package PortStateMachines

ProtocolStateMachine
(from ProtocolStateMachines)

<<enumeration>>
ocpKind

 request
 response

StateMachine
(from BehaviorStateMachines)

Transition
(from BehaviorStateMachines)

Region

State  0..1

 *
*

FinalNode

Vertex

0..1
CallTrigger

Trigger

Port
provided  required

referred 

Interface

Operation

port  

PseudoState

1..*

 
 1

 
* 

source outgoing

 
 1

 
* 

target incoming

Fig. 2. Port State Machines abstract syntax: definition of PortStateMachine and
PortTransition. For space constraints, the owning package name is shown only for
selected metaclasses. Metaclasses Region, Vertex, PseudoState, State and FinalNode
are owned by BehavioralMachines, Trigger and CallTrigger by CommonBehaviors,
Operation by Kernel, Interface by Interfaces and Port by CompositeStructures.
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multiple transitions in different regions of an orthogonal state specify the
same trigger (opposite to the UML 2.0 orthogonal state semantics where
all such transitions are taken simultaneously).

(v) The kind of a PseudoStates in a PoSM must be either initial or fork. For
the sake of simplicity of the PoSM definition, we omitted the other Pseu-
doState kinds: choice and junction (not meaningful without guards), deep-
History and shallowHistory (complex semantics; can be replaced with in-
creased state space), join (complex semantics, can be partially replaced
with FinalNodes) and exit and terminate (we focus on complete traces).

(vi) A transition from PseudoState may only target a vertex recursively con-
tained by the region containing the PseudoState. (I.e., may not cross
state boundaries outwards).

The restrictions specified above together with the constraints initially spec-
ified by UML 2.0 [13] assure certain properties; we highlight here those that
will be used later:

(i) A transition originating from a State may cross several boundaries of
containing states outwards, then cross several boundaries of composite
states inwards and finally targets a Vertex,

(ii) A transition originating from a PseudoState is not a PortTransition but
only a ProtocolTransition. A transition from an initial PseudoState within
a region r either targets a Vertex directly contained by r or a Vertex within
a State contained by r. Only one transition may originate from an initial
PseudoState.

(iii) Given a fork PseudoState pf contained in region r containing also a com-
posite state s, multiple transitions may originate from pf , each targeting
a Vertex in a different region of s.

Example 2.3 The PoSM shown in Fig. 1, after receiving a request for op-
eration Clerk.deposit, enters the orthogonal state RecordingDeposit. Af-
ter both its regions complete, the PoSM eventually sends a response for the
Clerk.deposit operation.

2.2 Trace Semantics of Port State Machines

We define the semantics of a PoSM PA via the traces generated by PA. We
model the behavior as traces of state events and communication events forming
the communication language and execution language of PA.

Definition 2.4 Let St be the set of all states and let Reg be the set of all
regions, directly or indirectly contained in a PoSM PA. For a region r ∈ Reg ,
we denote States(r) the set of states directly contained by r. In the same
vein, for a state s ∈ St , Regions(s) is the set of regions directly contained by
s. Regions(PA) is the set of top-level regions directly contained by PA.

Definition 2.5 State si is a substate of sj, if there is r ∈ Regions(sj) such
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that si ∈ States(r). A state sj recursively contains a state si if si is a substate
of sj, or there is a substate sk of sj such that sk recursively contains si.

A region rj recursively contains a state si, if si ∈ States(rj) or there is
sj ∈ States(rj) such that sj recursively contains si.

Definition 2.6 Let SL be set of labels for states in St and OL be the set of
labels for operations associated with transitions of PA.

We define the domain of state events SE = {entry , exit }×SL and the do-
main of communication events CE = {sent , received }×OL×{request , response }.
The set CE is the domain of events for communication traces of PA and the
set S = SE ∪CE is the domain of events for execution traces of PA. Note that
state events only capture entering or leaving a State, but not a PseudoState.

Definition 2.7 A configuration c of PA is a subset of St for which both the
following conditions hold:

(i) for each region r ∈ Reg, c contains at most one state s ∈ States(r)

(ii) if si ∈ c and si is a substate of sj, then sj ∈ c.

A state si is active in c if si ∈ c. A region r is active in c if there is a state
si ∈ States(r)c such that si ∈ c.

A configuration c is stable, if each top-level region of PA is active and for
each state si ∈ c, all regions of si are active.

Definition 2.8 The label of a PortTransition T associated via its trigger with
an operation op is the event e = < cdT , labelop , ocpT > ∈ CE , where cdT

and ocpT are the communication direction and operation call part attributes
of T and labelop ∈ OL is the label for op. A transition not associated with an
operation does not have a label.

In a configuration c (of PA) containing a state si, PA may take a transition
T originating from si, iff at least one of the following conditions holds:

(i) T has no label, and either si has no regions, or the active state of all
regions of si is a FinalNode.

(ii) T is a PortTransition labeled with event e ∈ CE and there is no state
sj ∈ c such that (1) si recursively contains sj and (2) a transition U
also labeled e originates from sj (in this case, we say that U has higher
priority than T ).

The innermost region recursively containing the source and target vertexes
of T is the least common ancestor (LCA) of T, denoted rlca,T . The LCA config-
uration clca,T is obtained from c1 by removing all states recursively contained
in rlca,T .

Example 2.9 For the PoSM shown in Fig. 1, {RecordingDeposit , ab1 , logfin}
is a stable configuration, in which ab1 7→ ab2 is the only legal transition and
the left region of RecordingDeposit is the LCA.

Configuration {RecordingDeposit , abfin, logfin} is also a stable configura-
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tion of this PoSM, where the only legal transition is RecordingDeposit 7→ cd2 ;
here, the single topmost region of the PoSM is the LCA.

Definition 2.10 From clca,T , T determines the target stable configuration the
following way:

(i) T is an engaged transition.

(ii) An engaged transition targeting a State s causes s to become active.

(iii) An engaged transition targeting a PseudoState p causes transitions out-
going from p to be engaged.

(iv) All containing states of a state that becomes active become active (if they
are not active yet).

(v) For each composite state that becomes active, all regions become active.
If an engaged transition Ti targets a vertex in a region r, r becomes
active by Ti explicitly and Ti determines the active state of r. Otherwise,
r becomes active implicitly and the transition originating from an initial
PseudoState of r becomes engaged. If there is no such transition, the
model is ill-formed. Eventually, after processing all engaged transitions
and according to these rules, all regions that must become active have an
active state selected, yielding a stable configuration c2. By observation,
clca,T ⊆ c1 ∩ c2.

A single run-to-completion step of PA from a stable configuration c1 to
a stable configuration c2 initiated by a transition T is captured with a trace
tT,k, acquired as concatenation of parts tT,exit, tT,com and tT,entry. The first
part tT,exit is a sequence of state exit events reflecting the transformation of
c1 to clca,T via a sequence of valid configurations cj,exit. Next, tT,com contains
the label of T if T is a PortTransition, or is a null sequence otherwise. Finally,
tT,entry is a sequence of state entry events reflecting the transformation of clca,T

to c2 via a sequence of valid configurations cj,entry. Note that due to the loose
ordering constraints on entry and exit events for orthogonal states, there may
be multiple traces tT,k capturing the run-to-completion step from c1 to c2 via
T .

The initial stable configuration cinit ,P A of PA is determined by transitions
from initial PseudoStates of top-level regions of PA. Configuration cfin,P A,k is
a final configuration of PA if the active state of each top-level region of PA is
a FinalNode.

We capture a single run of PA with a trace tP A , acquired as concatenation
of parts tP A,entry, tP A,k and tP A,exit, where tP A,entry is the sequence of state entry
events to reach the initial stable configuration cinit ,P A of PA from the empty
configuration, tP A,k is concatenation of a finite sequence of traces capturing
a sequence of run-to-completion steps reaching a final configuration cfin,P A,k

from cinit ,P A , and tP A,exit is a sequence of the state exit events to reach the
empty configuration from a cfin,P A,k.
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Definition 2.11 The set of all traces of all possible runs of PA forms the
execution language of PA, denoted LE (PA). Communication language of PA,
denoted LC (PA) is the restriction of LE (PA) to the domain of communication
events CE .

Example 2.12 The transition RecordingDeposit 7→ cd2 of the PoSM shown
in Fig. 1 may be captured with the following trace:

< exitabfin , exit logfin , exitRecordingDeposit , entrycd2 >

This trace (which does not contain any communication event) may be followed
in a run of the PoSM by a trace of the transition cd2 7→ fin (labeled with
sending a response for Clerk .deposit ; we use ? to denote receive, ! for send, ↑
for request and ↓ for response):

< exitcd2 , !Clerk .deposit ↑, entryabfin >

The following example is a possible trace from the communication language
of this PoSM:

< ?Clerk .deposit ↑, !Log .logDeposit ↑, !DB .addBalance ↑,
?DBNotify .newBalance ↑, !DBNotify .newBalance ↓,
?DB .addBalance ↓, ?Log .logDeposit ↓, !Clerk .deposit ↓ >

2.3 Notation

PoSMs introduce extensions to the UML state machine notation, with the
goal to avoid an increase in complexity of the state machine diagrams, even
when capturing the additional information required by PoSMs. In particular,
the extensions permit to: (i) capture the additional attributes of a transition
in its label, (ii) use implicit intermediate states and (iii) capture nested calls.
The notation shortcuts are demonstrated in Fig. 3, concisely describing the
same behavior as the PoSM in Fig. 1 (not employing the shortcuts).

The PoSM notation utilizes the notation of Behavior Protocols (BP) [16,17].
There, the event token ?a stands for receiving an event a and !a for sending
an event a. A call of an operation op is captured with a pair of atomic
events; in the event labels, the suffix ↑ denotes request and ↓ response. E.g.,
sequence ?op ↑;!op ↓ (here ; is the operator for sequencing) models receiv-
ing call of the operation op as receiving a request for op and sending a re-
sponse. In BP, the shortcuts ?op and !op stand for sequences ?op ↑;!op ↓ and
!op ↑;?op ↓; shortcuts ?op{Prot} and !op{Prot} stand for ?op ↑;Prot;!op ↓
and !op ↑;Prot;?op ↓ respective.

The notation for PoSMs employs these prefixes (?/!) and suffixes (↑/↓)
in the event label to express the attributes of a PortTransition. Due to the
limitations of the character set available in UML, we represent ↑ with ^ and ↓
with $ respectively. We demonstrate the notation and the shortcuts in Fig. 4.
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 ?Clerk.deposit

 ?DBNotify.newBalance

 !DB.addBalance

 !Log.logDeposit

LogConfirmed

LogReady

cd1

ab1

nb1

Fig. 3. Port State Machine employing call transition and call state shortcuts

Figure 4 (a) models receiving call of operation a, explicitly captured as two
PortTransitions adjoined in an (explicit) intermediate state. Fig. 4 (b) em-
ploys a call transition as a shortcut to model the same sequence. A single call
transition represents two PortTransitions and the intermediate state; mnemon-
ically, the circle on the call transition reminds of the implicit intermediate
state. The single label of the call transition (“?a”) determines the trigger of
both the PortTransitions; the communication direction of the first (request)
transition is equal to the symbol used in the label, while the communication
direction of the second (response) transition is the opposite.

 ?a^

 !b^

 ?b$

 !a$

?a

 !a$

 ?a^

(a) receiving call of operation a

(b) call transition ?a

(c) calling operation b while

d) call state ?a with

processing operation a

nested call transition !b

e) call state ?a expanded

 ?a^

 ?a^

 !b
 ?a

 !b

Fig. 4. Port State Machines notation

PoSM notation also provides a syntactic construct to model nested calls.
In Fig. 4 (c), operation b is called while operation a is being processed. The
same sequence of events can be captured with a call state, as demonstrated in
Fig. 4 (d). The call state construct represents a structure of transitions and
states, the core of which is a composite state containing the behavior that
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occurs between the request and response.

In the same way as for a call transition, two PortTransitions (for request
and response) are specified with only one occurrence of the operation call
label. To preserve the general operation call semantics, a call state may only
be entered with the request transition, may complete only after its internal
behavior completes, and must complete with the response transition. Thus, a
call state may have only one incoming and one outgoing transition. Moreover,
to assure that the composite state may only exit with the completion event, the
composite state exits with an unlabeled transition targeting an intermediate
state, from which the response transition originates. Figure 4 (e) demonstrates
the composite state, intermediate state and transitions represented by the call
state shortcut in Fig. 4 (d).

The incoming transition of the call state must target the state itself, an
initial PseudoState has to be used to specify where the region(s) of the call
state start (a call state may have multiple regions). Syntactically, a call state
employs the notation for a composite state and is distinguished with two
semicircles attached to the top and bottom of the state; the operation call
label is placed in the top-right corner.

Note that throughout this example, we used for brevity the symbols a and
b to refer to an operation on an interface. Clearly, an identifier of the inter-
face and an identifier of the operation are required to identify the operation
unambiguously; in the other examples (e.g., figs. 1 and 3) the character “.”
(dot) is used to join these identifiers.

Also please note that we define the call state and call transition notation
shortcuts by specifying how they expand into elements defined in the PoSM
metamodel. We consider this approach to be the most efficient with respect
to readability of the paper, in particular of the trace semantics definition.
Alternatively, we might define call state and call transition in the metamodel
and either extend the semantics definition also to these elements, or to define
a transformation of a model employing these constructs to a model based
only on the already considered metamodel elements; both these approaches
are feasible.

2.4 Properties of Communication Traces

In this section, we define the well-formedness property of communication
traces and show its relation to the PoSM notation shortcuts; moreover, we
also claim that the communication language of a PoSM is a regular language,
we support this claim with a proof sketch.

Definition 2.13 A communication trace t is well-formed if t can be trans-
formed into an empty trace in a sequence of steps, where in each step i a pair
of events erq

i , ersp
i representing a (single) call of operation op ∈ OL is removed

from t ( erq
i preceding ersp

i in t). For receiving a call of op, erq
i = !op ↑ and

ersp
i = ?op ↓, for sending a call of op, erq

i = ?op ↑, ersp
i = !op ↓.
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If such a sequence of the removal steps exists that in each step, erq
i imme-

diately precedes ersp
i , t is a non-overlapping communication trace.

A PoSM is well-formed if all its communication traces are well-formed.

Theorem 2.14 If the syntactical definition of a PoSM PA does not use ex-
plicit request and response PortTransitions (all PortTransitions are defined with
the call transition and call state syntactical constructs) and each composite
state in PA may only exit with its completion event, then all traces from
LC (PA) are well-formed. In addition, if PA does not contain any orthogo-
nal state, then all traces from LC (PA) are non-overlapping.

Proof sketch: A call transition (and also a call state) always specifies a pair
of transitions labeled with the request and response events; unless the call
transition (a call state) is contained in a composite state with a labeled out-
going transition (that could cause the call to terminate without the response
event), the call always completes. 2

If not contained in an orthogonal state, events for different calls may not in-
terleave in trace t, until ti is empty, there is always an erq

i immediately followed
by a ersp

i in ti. 2

Claim 2.15 LC(PA) is a regular language.

Proof sketch: A PoSM PA can be transformed to a finite automaton. By
following the structure of PA, orthogonal regions may be replaced with Carte-
sian product of states; a composite state can be replaced with its substates,
redirecting outgoing transitions to all substates (except those that already
have a higher-priority transition) and redirecting the incoming transition to
the substate targeted by transition from initial PseudoState. The general-
ized finite automaton (employing empty transitions). This way we yield a
non-deterministic finite automaton, generating a regular language. 2

3 Composition Verification with PoSMs

Behavior Protocols [17] provide a behavior compliance relation, which can
be used to verify composition of components based on their behavior spec-
ifications. In this section, we first briefly review behavior compliance as it
is defined in Behavior Protocols [17] and describe how behavior compliance
can be used to address consistency issues in the composition of software com-
ponents. Afterwards, we show how behavior compliance can be applied to
PoSMs. Finally, we discuss how this can be used to address the consistency
issues in composition of UML 2.0 components.

3.1 Behavior Compliance in Behavior Protocols

In behavior protocols, a single run of an agent A is captured as a sequence of
atomic events (trace) from a finite domain S processed by A. Given a set of
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labels EventNames , S is formed as {?, !, τ} × EventNames × {↑, ↓} (here, τ
denotes an event internally processed by A; the symbols ?, !, ↑ and ↓ stand for
receive, send, request and response). Behavior of an agent A (denoted L(A))
is captured as the set of all traces of A, forming a language upon S.

Behavior of A may be described with a behavior protocol ProtA, an ex-
pression syntactically generating a set of traces over S∗ (denoted L(ProtA),
conveniently a regular language). Employing a regular expression-like no-
tation, behavior is described using event tokens for events from S and the
following operators (given in priority order): * (repetition), ; (sequencing),
+ (alternative), | (parallelism, based on arbitrary interleaving of traces) and
‖ (parallel-or, A‖B is a shortcut for A + B + A|B). Further, the composed
operators are composition (uX), adjustment (|X |) and consent (5X). The
notation also uses the shortcuts discussed in Sect. 2.3 and parentheses.

Example 3.1 The behavior described in the PoSM notation in Figs. 1 and 3
may be expressed in the behavior protocols notation as:

?Clerk.deposit{ !DB.addBalance{ ?DBNotify.newBalance }
| !Log.logDeposit }

The communication trace demonstrated in example 2.12, capturing this
behavior, is also a trace of this behavior protocol.

Composition ProtA uX ProtB yields the behavior resulting when agents
A and B described by protocols ProtA and ProtB are composed together;
X is the set of event labels from Events = EventNames × {↑, ↓} of events
transmitted between A and B. For each pair of traces α ∈ L(ProtA), β ∈
L(ProtB), the events from α and β arbitrarily interleave. In each such resulting
trace, all events with label x ∈ X are processed the following way: sequences of
form ?x !x or !x ?x are replaced by τx (an internal event); a trace containing
events with label x that cannot be processed this way (unmatched !/?) is
discarded from the result of the composition operator.

The adjustment operator also interleaves pairs of traces α ∈ L(ProtA), β ∈
L(ProtB), but exact match (not ? / ! correspondence) of events with label from
X is required and only pairs α, β that match on events from X are included
in the resulting behavior.

The consent operator (introduced in [1,2]) is similar to the composition
operator, but generates erroneous traces for situations when interaction of A
and B results into an error. The types of errors considered are BadActivity
(A emits a but B is not ready to absorb a), NoActivity (similar to a deadlock
situation) and Divergence (interaction of A and B never stops). The consent
operator implicitly provides a relation for checking the composition of A and B,
by considering the composition to be correct if A 5X B contains no erroneous
traces.

Definition 3.2 We assume the set S is divided into disjoint sets Sprov (inputs,
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events on provided interfaces) and Sreq (outputs, events on required interfaces).
Behavior L(A) of agent A is compliant with behavior L(ProtA) of protocol
ProtA on set S if (i) A can accept any sequence of inputs dictated by ProtA

and (ii) for such inputs, A creates only outputs anticipated by ProtA.

A formal definition is provided via the adjustment operator: L(A) is com-
pliant with L(ProtA) on set S iff:

(i) L(ProtA)/Sprov ⊆ L(A)/Sprov

and

(ii)
(
L(A)/S |Sprov | L(ProtA)/Sprov

)
⊆ L(ProtA)/S.

where / is the operator for restriction.

By adjusting L(A)/S with L(ProtA)/Sprov (the dictated inputs) over Sprov ,
only traces from L(A)/S with inputs dictated by L(ProtA) are considered;
these traces must be contained in L(ProtA/S). For reference, the original
definition of behavior compliance is available in [17]. The case study in Sect. 4
provides demonstrations of the behavioral compliance relation.

3.2 Composition Verification with Behavior Compliance

In [14], we identified the consistency issues to be considered in component
composition in a hierarchical component model. Basically, the issues are:
(a) whether the composed behavior of components A1..An forming together
component S is compliant with the behavior specification for S; (b) whether
two distinct specifications for a component specify “compatible” behavior; (c)
and whether communication between A and B is correct.

In behavior protocols, the issue (a) is addressed by the compliance relation
(employing the composition operator to obtain the composed behavior). The
compliance relation may be also used to address the issue (b). Finally, the
issue (c) is addressed by the consent operator.

Note that a verifier tool [18] is available to test the compliance relation
(supporting the composition operator); thus, the issues (a) and (b) are decid-
able in behavior protocols. Enhancing the verifier tool to support the consent
operator is subject of future research.

3.3 Behavior Compliance in PoSMs

The behavior protocols compliance relation is defined on languages (upon
the domain of communication events) and thus, its definition is applicable to
PoSMs as well. The set CE (domain of communication events) can be used
in place of the set S. The set Sprov is the set of events on provided interfaces
of the Port the PoSM is associated with, Sreq is the set of events on required
interfaces.

Although composition and consent are protocol operators, their semantics
is defined solely based on the languages generated by their operands and thus,
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their definition can be extended to communication languages of PoSMs.

Therefore, the consistency issues (a), (b) and (c) can be addressed for
PoSMs; the existing behavior protocols compliance verifier may be employed
to evaluate the compliance relation on PoSMs.

Note that the compliance relation is applied only to communication lan-
guages generated by PoSMs; neither the states, nor the structure of the state
machine are considered in the compliance relation. Broadening the definition
of compliance relation to execution languages is subject of future research.

3.4 Relation of Behavior Protocols and Port State Machines

Both PoSMs and behavior protocols describe behavior in a way that yields a
set of communication traces, conveniently a regular language. It is possible to
transform a behavior protocol into a PoSM, i.e., construct a PoSM generating
the same communication language as the behavior protocol (restricted to the
communication events contained in S).

In this process, (i) an event token explicitly specifying a request (↑) or
a response (↓) is translated into an explicit PortTransition, (ii) a shortcut ?a
or !a is translated into a call transition, (iii) shortcut ?a{Prot} or !a{Prot}
is translated into a call state; the protocol Port is transformed into the in-
ternal behavior of the call state. A protocol may also specify internal events
(τ), which do not influence the communication described by the protocol and
are neither considered in the compliance relation; we omit them in the trans-
formation. Following the syntactic structure of the protocol, we translate
the sequencing operator (;) into sequenced states, repetition (*) into a loop
transition, alternative (+) into multiple outgoing transitions; parallelism (|) is
modeled via orthogonal regions.

Note that in this process, we create states as necessary to transform the
structure of the protocol into a state machine. In the PoSM shown in Figs. 1
and 3, for selected states, names are provided to make the PoSM specifica-
tion more expressive. In an automated process, anonymous states (without
a name) have to be used instead. Here, automatically generated state labels
may be employed to distinguish states in execution traces (in a way similar to
how the states ab1 or logfin are labeled).

In a similar vein, we may consider constructing a behavior protocol for a
Port State Machine. However, in the general case, the only solution is to first
transform the state machine into a regular automaton (expanding composite
states) and afterwards, apply the generic algorithm for transforming a regular
automaton into a regular expression. Such process would significantly impair
readability of the resulting behavior protocol.

There may be interesting special cases, namely, when the only composite
states used in the state machine are call states. Here, the transformation can
be done separately at each level of nesting; exploring these special cases is
subject of future research.
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4 Case Study: Compliance of Port State Machine

The definition of the behavior compliance relation is based on the notion of
substitutability [17]; in the SOFA Component model [15], behavior compliance
is used to verify composition of software components. Given the specification
of behavior of a component in the form of a frame protocol, the key question
is, whether behavior of the realization of the component, as described by its
architecture protocol, is compliant with the frame protocol.

This may be also applied to verify composition of UML 2.0 components;
with PoSMs, we may reason on compliance of a realization described by a
PoSM PR

i with the specification described by PoSM P S.

Let us consider the behavior specified by PoSM in Fig. 3 as the speci-
fication PoSM P S. This PoSM specifies that while a call ?Clerk.deposit
is being processed, a call !Log.logDeposit is issued in parallel with issuing
a call to !DB.addBalance, during which a call ?DBNotify.newBalance is re-
ceived. Note that here, “in parallel” means arbitrary interleaving of the traces
generated by the orthogonal regions of the PoSM.

Example 4.1 Figure 5 shows PoSM specifications of three possible realiza-
tions of this specification. In Fig. 5 (a), PoSM PR1 specifies that the call
!Log.logDeposit occurs after the call !DB.addBalance completes. Such re-
alization is (trivially) compliant with the specification, its behavior restricted
to Sprov contains all traces from LC(P S)/Sprov (condition (i) of 3.2) and
LC(PR1) ⊆ LC(P S), thus condition (ii) holds as well.

Example 4.2 The PoSM PR2 in Fig. 5 (b) in addition specifies that the call
!Log.logDeposit may occur zero or more times (instead of exactly once).
Consequently, its language LC(PR2) is not compliant with LC(P S) – although
condition (i) of 3.2 holds, condition (ii) does not: LC(PR2) contains traces
capturing an arbitrary number of !Log.logDeposit calls, while LC(P S) con-
tains only traces where the call !Log.logDeposit occurs exactly once.

Example 4.3 The PoSM PR3 in Fig. 5 (c) instead specifies that the call
?DBNotify.newBalance may be processed zero or more times; and that the
call !Log.logDeposit will be issued while processing ?DBNotify.newBalance,
each time this call is received. Surprisingly, LC(PR3) is compliant with the
LC(P S). Although the PR3 can call !Log.logDeposit more than once (or not
at all), this may occur only in runs where ?DBNotify.newBalance is called
more than once (or not at all). Thus, after reducing (via the adjustment
operator) LC(PR3) to traces with inputs contained in LC(P S) (i.e., traces
where ?DBNotify.newBalance is called exactly once), the resulting behavior
calls !Log.logDeposit exactly once (in an order permitted by the P S) and
therefore, condition (ii) of 3.2 holds; condition (i) holds trivially.

As the last example demonstrates, behavior compliance permits that be-
havior of a realization contains traces with outputs not expected by the spec-
ification, in case such traces result from inputs not permitted by the specifi-
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 ?Clerk.deposit

 ?DBNotify.newBalance

 !DB.addBalance

 !Log.logDeposit

LogConfirmed

LogReady

cd1

ab1

nb1

 ?Clerk.deposit

 !Log.logDeposit

cd1

ab1

 ?DBNotify.newBalance

 !DB.addBalance

nb1

LogReady

LogConfirmed

 ?Clerk.deposit

cd1

ab1

!DB.addBalance
nb1

?DBNotify.newBalance

 !Log.logDeposit

LogConfirmed

LogReady

(a) !Log.logDeposit in sequence

(b) !Log.logDeposit called zero or more times

(c) !Log.logDeposit called inside
     ?DBNotify.newBalance (which
     may be called zero or more times)

Fig. 5. Port State Machines describing possible realizations of the behavior specified
by Fig. 3

cation. Consequently, substitutability based on behavior compliance permits
a broader set of realizations to be used for a given component specification.

5 Evaluation and Related Work

Port State Machines permit to capture the interleaving of events (representing
operation calls) on a set of provided and required interfaces associated with
a Port of a UML 2.0 Component. PoSMs support modeling nested calls; tech-
nically, an arbitrary fixed depth of recursion can be modeled with a PoSM.
Unlimited recursion (which inherently causes the generated language not to
be regular) is avoided.

Conveniently, the language generated by a PoSM is regular (taking into
account that there are no constraints, no event deferring and, inherently to
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state machines, no recursion). Thus, PoSMs permit to establish a compliance
relation and apply the behavior protocols compliance verifier [18].

The UML 2.0 Interactions (former sequence diagrams) also explicitly cap-
ture an operation call with atomic request and response events; also, trace
model semantics is defined for Interactions. However, Interactions focus on
describing communication among interconnected objects. Although it is pos-
sible to employ a formalGate to capture calls of an Operation exposed via an
Interface of a Port, the notation does not support efficiently describing the
ordering of communication on a Port.

The work presented in [11] defines an equivalence relation for state-chart
specifications; bisimulation of labeled transition systems is used for testing the
equivalence. In [10], the authors translate UML statecharts into PROMELA,
the input language of SPIN. In a way similar to our approach, a subset of
statecharts is chosen such that the statechart can be translated to a finite
state automaton. However, call nesting is not considered in this approach.

In [20], two algorithms for testing conformance of LTS and behavior ex-
pressions are presented. The approach employs test cases, testing is done via
synchronous parallel execution of a test case and the implementation. The
test cases considered are deterministic, but the implementation may behave
nondeterministically; thus, as an implementation passes a test case only if all
possible runs pass, theoretically, a test case may have to be executed infinitely
many times.

Method State Machines (MSMs) introduced in [19] extend state machines
with the ability to model recursion. Recognizing the obstacles of the run-
to-completion semantics, the authors model operation calls with two events,
corresponding to request and response. A relation of compliance of a Protocol
State Machine with a set of MSMs is defined; however, as a tradeoff for mod-
eling recursion, the relation is not decidable. Moreover, the approach taken
there is object-based, focused on the graph of operation calls among coop-
erating objects; it would not be possible to capture external communication
on the interfaces of a software component with MSMs without a significant
modification.

Use Case Maps [3,4] is a notation for visually expressing how a scenario (a
particular run of a task to be completed by a system) traverses a component
hierarchy. Thus, for a component, use case maps show the nesting of calls in
a scenario. However, as use case maps are focused on individual scenarios,
obtaining the “whole picture” of behavior on the interfaces of a component is
not possible.

The Rigorous Software Development Approach coined in [21] considers gen-
erating a state machine from a sequence diagram with the aim to check for
consistency and aid with generating code. However, neither composition, nor
assembly is addressed here.

An abstract state machine language is employed in [7]; instead on reasoning
on behavior compliance, the authors aim to generate test scenarios from the
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abstract state machine specification; selecting test sequences is also considered
in [9].

In [22], Message Sequence Charts (MSC) are translated into a labeled
transition system (LTS) in order to facilitate model checking. A synthesis and
analysis algorithm is provided; however, as the approach is focused on indi-
vidual messages rather than on operation calls, call nesting is not addressed
here.

6 Future Work

In our future work, we will use the OCL language to formally capture the
compliance relation in the UML metamodel.

Moreover, we aim to propose a restricted constraint language, that would
not break the regularity of the language generated by a PoSM, yet provide
convenient modeling power. We consider developing a simple constraint lan-
guage utilizing only the current state of the state machine (using an in(state)
predicate to query orthogonal regions of the state machine); such a constraint
language should fulfill the expectations: the language generated by a PoSM
would remain regular, while the perceived expressive power of specifications
would significantly increase.

With the aim to employ PoSMs to model use cases, our future goal is to
further investigate operations for assembling behavior scattered in multiple
PoSMs into a single PoSM. Currently, composition is defined only for commu-
nication languages of PoSMs, yielding the composed behavior as a language.
We aim to explore composition of PoSMs at structural level, with the goal
to construct a PoSM representing the composed behavior. Moreover, broad-
ening the definition of behavior compliance to include also state events (for
entering/exiting a state) remains a challenge.

To obtain a proof-of-the-concept, we aim to include the proposed UML
extensions in a UML Profile implemented for a UML tool, providing support
for PoSMs and employing the behavior compliance verifier tool [18] already
available for behavior protocols.

7 Conclusion

In this paper, we proposed the Port State Machines (PoSMs). Building on
UML 2.0 [10] Protocol State Machines and Behavior Protocols [17], Port State
Machines allow to capture the interleaving of operation calls on a set of pro-
vided and required interfaces. Operation calls are captured as a pair of atomic
events representing the start of the call (request) and end of the call (response).
This way, nesting of operation calls (e.g., a call-back) can be captured in a
specification.

Moreover, as PoSMs use atomic events, the behavior on a Port specified
by a PoSM is captured as a set of traces, forming a language upon a finite
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alphabet. The behavior compliance relation has been established to reason
on compatibility of PoSM specifications. As the language of a PoSM is reg-
ular, the compliance relation is decidable; conveniently, an already existing
verification tool [18] can be employed for this task.
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