Abstract: In this report, we define a formal semantics of component ensembles.
1 Introduction

An ensemble is a group of components formed to perform joint goal or coordinate some activity. Members of an ensemble are established dynamically at runtime. An ensemble is determined by its membership condition—a predicate over components’ types and knowledge. Ensembles can be hierarchically decomposed into further sub-ensembles. The semantics is that members of a sub-ensemble must be members of the parent ensemble too. This way, a top-level ensemble defines the goal of the system as a whole. A component can be a member of multiple ensembles at the same time, which naturally reflects the fact that a component may be part of a number of functionally orthogonal cooperations.

2 Ensemble Semantics

Definition 1. Component types and component instances We distinguish component types and component instances. Each component instance c is instantiated from a particular component type C. A component type C is associated with a set of attributes K that form the knowledge (i.e. the state) of a component instances of C. Each component instance c of type C is associated with a valuation of the knowledge—i.e. a function V_K that assigns each attribute $k \in K$ a particular value.

Definition 2. Ensemble types An ensemble type E is a tuple (P, R, G, M, U), where:

- P is a set of ensemble parameters.
- R is a set of roles of component roles in the ensemble. Each component role $r \in R$ is associated with function $r_{dom}(r)$ that for a given valuation of ensemble parameters V_P (see Definition 3) determines component instances that may be selected for the role (i.e. the powerset $2^{v_{dom}(V_P)}$ is the domain for the role r).
- G is a set of sub-ensemble groups in the ensemble. Each sub-ensemble group $g \in G$ is associated with function $g_{dom}(g)$ that for a given valuation of ensemble parameters V_P yields a set of tuples (E_i, V_P). Each of these tuples prescribes ensemble type and parameters for instantiation of a potential sub-ensemble in the sub-ensemble group g (more in Definition 3 below). We call the tuple (E_i, V_P) an ensemble instance specification.
- M is a membership condition that determines under what condition an ensemble is valid. The predicate M is parameterized by valuation of ensemble parameters, selection of component instances to each role r, and a set of sub-ensemble instances for each sub-ensemble group g.
- U is a utility function. Similarly, to M, it is parameterized by valuation of ensemble parameters, selection of component instances to each role r, and set of sub-ensemble instances for each sub-ensemble group g.

Definition 3. Ensemble instances An ensemble instance e of ensemble type $E = (P, R, G, M, U)$ is a tuple (V_P, V_R, V_G), where:

- V_P is a function that assigns a value to each parameter $p \in P$.
- V_R is a function that to each component role $r \in R$ assigns a subset of $r_{dom}(V_P)$. This subset is the set of component instances selected as members of the ensemble instance (as part of the role r).
- V_G is a function that to each sub-ensemble group $g \in G$ assigns a set of ensemble instances I_g. Each ensemble instance e_j from I_g must comply with some ensemble instance specification (E_i, V_P) from the $g_{dom}(V_P)$ associated with g. The projection from I_g to $g_{dom}(V_P)$ does not have to be surjective (i.e. not all ensemble instance specifications in $g_{dom}(V_P)$ have to be actually instantiated).

Formally, for every $e_j = (V_P^j, V_R^j, V_G^j) \in I_g$ there exists an ensemble instance specification $(E_i, V_P^j) \in g_{dom}(V_P)$ such that e_j complies with the specification (i.e. E_i is ensemble type of e_j and $V_P^j = V_P^i$).

The ensemble instance is valid only if all the following three conditions are true:

- the membership condition is satisfied—i.e. $M(V_P, V_R, V_G)$ is true
- all sub-ensemble instances are valid—i.e. $\forall g \in G, e_s \in V_G(g) : e_s$ is valid
• there is no cycle – i.e. an ensemble instance is not transitively its own sub-ensemble instance

• all component instances that are members of any sub-ensemble instance are also members of the ensemble instance

The utility of the ensemble instance is $U_e = U(V_P, V_R, V_G)$. Note that by being parameterized by V_G, the utility function U can aggregates utilities of sub-ensemble instances.

Definition 4. Root ensemble instance An ensemble instance is called root ensemble instance if it is not a sub-ensemble of another ensemble instance. We denote A the set of all root ensemble instances.

We assume function AS_{dom} which yields a set ensemble instance specifications (E_i, V_P^i). Each such specification determines how to instantiate one potential root ensemble instance – i.e. for each root ensemble instance $e_j = (V_P^j, V_R^j, V_G^j) \in A$ there exists an ensemble instance specification $(E_i, V_P^j) \in AS_{dom}$ such that e_j complies with the ensemble instance specification.

For the sake of instantiation of ensembles, we also associate each tuple $(E_i, V_P^j) \in AS_{dom}$ with a component instance $c \in C$. This component c, is responsible for instantiating the corresponding ensemble instance e. We call the component c an initiator for ensemble instance e.

Definition 5. Optimal instantiation of ensembles A valid ensemble instance $e = (V_P, V_R, V_G)$ of type E is optimal (with respect to ensemble instance specification (E, V_P) that specifies how to instantiate the ensemble instance) if there is no other valid ensemble instance $e' = (V_P', V_R', V_G')$ that complies with the ensemble instance specification (E, V_P) and $U_e < U_{e'}$. Ensembles in a system are optimally instantiated (with respect to AS_{dom}) if for each ensemble instance specification $(E_i, V_P^j) \in AS_{dom}$, one of the following conditions hold:

• There exists a corresponding $e_j = (V_P^j, V_R^j, V_G^j) \in A$ such that complies with (E_i, V_P^j) and is optimal.

• There exists no valid $e_j = (V_P^j, V_R^j, V_G^j)$ that would comply with (E_i, V_P^j)