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Algorithms for Propositional Satisfiability



Why study propositional satisfiability?

> Interesting from both theoretical and practical perspective

» First problem to be proven NP-complete [Cook '71, Levin '73]
» Many industrial problems encoded as SAT

» Hardware and software verification

» Automated planning - Planning as Satisfiability
» Product configuration
>



Progress in SAT solving
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Progress in SAT solving
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Approaches to SAT solving

DPLL framework Stochastic search

» complete procedure > incomplete procedure
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> very efficient for instance
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Approaches to SAT solving

DPLL framework Stochastic search
» complete procedure » incomplete procedure
> very efficient for instance » better at solving random
with structure satisfiable instances
» important when proof of » can be faster to obtain
unsatiafiability required satisfying assignment

(e.g. verification)



Problems of naive satisfiability algorithm

Naive algorithm

Enumerate all assignments. Check if formula is satisfied under any
of them.



Problems of naive satisfiability algorithm

Naive algorithm
Enumerate all assignments. Check if formula is satisfied under any
of them.

» Unnecessary repetition of partial assignment leading to
conflict.

» No information preserved between tries of different
assignments

» Lots of unnecessary work being done over and over again.



DPLL algorithm - overview

v

DPLL algorithm (Davis-Putnam-Loveland-Logemann, 1962)

v

Input formula assumed to be in CNF

v

Search in a tree of partial assignments

v

Backtracking on conflict

v

Unit propagation prunes the tree



Basic concepts

Definition (state of a clause)

Let a: V — {True, False} be an assignment of variables from V.
Then generalization of « on a clauses of set of variables V' D V is
a* 1 {c| cis a clause over V'} — {True, False, Undef}.

» c is satisfied, a*(c) = True, if at least one literal in c is
satisfied by «

» cis conflicting, a*(c) = False, if all literals are falsified by «

» cis unresolved, a*(c) = Undef, otherwise.



Basic concepts

Definition (state of a clause)

Let a: V — {True, False} be an assignment of variables from V.
Then generalization of « on a clauses of set of variables V' D V is
a* 1 {c| cis a clause over V'} — {True, False, Undef}.

» c is satisfied, a*(c) = True, if at least one literal in c is
satisfied by «

» cis conflicting, a*(c) = False, if all literals are falsified by «

» cis unresolved, a*(c) = Undef, otherwise.

Definition (unit clause)

A clause c is unit under assignment « if it is not satisfied and all
but one literals are falsified by a.



Basic concepts

Example
Let  be {x1 > 1,xp — 0,x4 — 1}. Then

v

x1 V x3 V —xy is satisfied,

» —x1 V xp is conflicting,

> —x1 V —xg V X3 is unit,

» —xy V x3 V x5 is unresolved.
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x1 V x3 V —xy is satisfied,

» —x1 V xp is conflicting,

> —x1 V —xg V X3 is unit,
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Definition (unit clause rule, antecedent clause)

Given a partial assignment « and a clause ¢ that is unit under «, «
must be extended so that is satisfies the last unassigned literal /.
We say that / is implied by ¢ (under a)) and we call ¢ the
antecedent of .



Basic concepts

Example
Let  be {x1 > 1,xp — 0,x4 — 1}. Then

v

x1 V x3 V —xy is satisfied,

» —x1 V xp is conflicting,

> —x1 V —xg V X3 is unit,

» —xy V x3 V x5 is unresolved.

Definition (unit clause rule, antecedent clause)

Given a partial assignment « and a clause ¢ that is unit under «, «
must be extended so that is satisfies the last unassigned literal /.
We say that / is implied by ¢ (under a)) and we call ¢ the
antecedent of .

Example

The clause ¢ = —=x3 V —x4 V x3 and the partial assignment
{x1— 1,xa — 1} imply x3 — 1 and Antecedent(x3) = c.



The power of unit propagation

» The goal is to satisfy a CNF formula.

» (fuVwW)A(uVV)A(U)A(-wV z); a={}

» (u) is unit under «
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The power of unit propagation

» The goal is to satisfy a CNF formula.

» (uVW)A(uVV)A(u)A(mw V z);
a={u,w}

» (—w V z) is unit under a



The power of unit propagation

» The goal is to satisfy a CNF formula.

> (uVw)A(uVV)A(U)A(mw V 2);
a={u,w,z}
» All clauses are satisfied by .
Solved by unit propagation. No decisions
needed.



DPLL algorithm

procedure DPLL(¢p, )
if Vc € ¢ then c is satisfied by a return TRUE

1:

2

3 if dc € ¢ then c is conflicting under o return FALSE
4 o< aUUNIT-PROPAGATION()

5: x <= SELECT-VAR()

6 if DPLL(a U {x — 1}) then return TRUE

7 if DPLL(a U {x + 0}) then return TRUE

8

return FALSE



DPLL algorithm

Notes

UNIT-PROPAGATION applies unit clause rule until no clauses
are unit
After unit propagation, assignment can be extended with pure
literals.

» But this is not used in practice (too costly).
The phase of unit propagation possibly with pure literals is
often referred to as BCP - Boolean constraint propagation
SELECT-VAR selects an unassigned variable. Both values of
the variable are tried.



DPLL - running example

© = (x1Vx3Vxg)A(—x1Vx2Vx3)A(—x1Vx3) A(—x2V—xa )A(X3V Xq)
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© = (x1Vx3Vxg)A(—x1Vx2Vx3)A(—x1Vx3) A(—x2V—xa )A(X3V Xq)

1. Decide a(x1) = 1:
(CaVxsVxa)A(—xaVxeVxs)A
(—‘Xl Vv —\Xg) /\(—|X2V—|X4)/\(X3\/X4)

unit clause

2. Derive a(x3) = 0:

(X\ V x3 V X4) A
(—\Xl Vv X2 Vv X3) /\(_‘Xl Vv j><i;) A
~——

unit clause

(_‘XQ Vv —|X4) N (X3 Vv X4)
N——
unit clause
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(Xl V x3 V X4) A\ (—‘X1 V xo V X3) AN
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———
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DPLL - running example
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1. Decide a(x1) = 0:

(aVxsVxa)A(xVxVx)A
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. Decide a(x) = 1:

(1 VxsVxa)A(—x Vo Vxs)A
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DPLL - running example

© = (x1Vx3Vxg)A(—x1Vx2Vx3)A(—x1Vx3) A(—x2V—xa )A(X3V Xq)

1. Decide a(x1) = 0:
(aVxsVxa)A(xVxVx)A
( \/—\X3)/\(—\X2\/—\X4)/\(X3VX4)

2. Decide a(x) = 1:
(X1\/X3\/X4)/\( Vv \/X3)/\
( \/—|X3)/\(ﬁX2 V —|X4) /\(X3\/X4)

unit clause

3. Derive a(xs) = 0:
(aVxsVxa)A(—x Vo Vxs)A
(o Vaxg) A (xe Vi )A(x3 Vo xa)

unit clause

4. Derive a(x3) = 1:
(a Vs Vxa)A(-xa VoV
( V=) A(—xe V IA(

a={x31=0,% =1,x3 =1, x4 =0} is a satisfying assignment of ¢

) A
\/X4)



Deficiencies of DPLL

Y =(xaVx3Vxe)A(—x1VxaVx3) A(—x1V=xg) A(—xe V—xa) A(x3V xg) A
(w1 VysVya) A(my2VysVya) A(ys Vo) A(=ys Viya) Allys vV —ya)
» fixed variable ordering: y1,x1, X0, X3, X4, ¥2, V3, Va

> no pure literal propagation
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Deficiencies of DPLL

Y =(xaVx3Vxe)A(—x1VxaVx3) A(—x1V=xg) A(—xe V—xa) A(x3V xg) A
(3 VysVya) A(y2 Vs Vya) A(oys Vooya) A(ys Viyva) Alys V —ya)

>

>

>

fixed variable ordering: y1, x1, X2, X3, X4, V2, V3, Ya
no pure literal propagation
algorithm tries x; — 1 for both branches y; — 1 and y; — 0

repeats the same conflict on x variables in both of these
branches

DPLL can repeat the same mistake over and over again

SAT solver should learn from past mistakes



Implication graph

Definition (Implication graph)
Implication graph for « is an acyclic labeled directed graph
G = (VU{K}, E) where:
» Vertices V correspond to variables.
> labeled by current assignment and decision level
» x@QN (—x@N): x is assigned True (False) at decision level N.
» Edges E represents reasons for assigning a value.
» (x,y) € E, if =x € Antecedent(y) with a(x) =1 or
x € Antecedent(y) with a(x) =0
> (x,y) is labeled with Antecedent(y).
> Vertex K represents a conflict
» (x,K) € E, if -x € c with a(x) =1 or x € ¢ with a(x) =0
where c is a conflicting clause under a.
» (x, K) is labeled the corresponding conflict clause.



Implication graph

Definition (Implication graph)
Implication graph for « is an acyclic labeled directed graph
G = (VU{K}, E) where:
» Vertices V correspond to variables.
> labeled by current assignment and decision level
» x@QN (—x@N): x is assigned True (False) at decision level N.
» Edges E represents reasons for assigning a value.
» (x,y) € E, if =x € Antecedent(y) with a(x) =1 or
x € Antecedent(y) with a(x) =0
> (x,y) is labeled with Antecedent(y).
> Vertex K represents a conflict
» (x,K) € E, if -x € c with a(x) =1 or x € ¢ with a(x) =0
where c is a conflicting clause under a.
» (x, K) is labeled the corresponding conflict clause.

> Roots (no incoming edges) correspond to decisions, inner nodes (except
K) to unit propagation. If a there is a path from roots to K we call the
implication graph the conflict graph.



Example of implication graph
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Example of implication graph

© = (x1Vx3Vxa)A(—x1Vx2Vx3)A(—x1Vox3) A(—x2V—xa ) A (X3V xa)

1. Decide a(x) = 1:
(a1 VxsVxa)A(—xVxeVx3)A
(=x1 Vox3) A(mx2 V =xa) A (X3 V xa)
—_——

@1
unit clause X
2. Derive a(x3) = 0: —x1 Vg
(Ca VxsVxa)A(—x1 Ve Vxs)A(—x V
~—_——
unit clause —x301

3) A (mxe Voxa) A (3 V xa)
——

unit clause



Example of implication graph

© = (x1Vx3Vxa)A(—x1Vx2Vx3)A(—x1Vox3) A(—x2V—xa ) A (X3V xa)

1. Decide a(x) = 1:
(a1 VxsVxa)A(—xVxeVx3)A
(=x1 Vox3) A(mx2 V =xa) A (X3 V xa)
v x101

unit clause
2. Derive a(x3) = 0:
(Ca VxsVxa)A(—x1 Ve Vxs)A(—x V
————

—x1 VX3

unit clause X1 Vo Voxg

YA (mx2 V —xa) A (X3 V xa)
——

x3 V Xxg

X4@1

. V x2 V X
unit clause XLV R Vs
x2@1

3. Derive a(x2) =1, a(xs) = 1:
(CaVxs V) A(=xa Vo Vxs)A(—x V
YA (mx2 V —xa) Az V xa)
—_————

conflict clause



Example of implication graph

© = (x1Vx3Vxa)A(—x1Vx2Vx3)A(—x1Vox3) A(—x2V—xa ) A (X3V xa)

1. Decide a(x) = 1:
(a1 VxsVxa)A(—xVxeVx3)A
(=x1 Vox3) A(mx2 V =xa) A (X3 V xa)
————

unit clause
2. Derive a(x3) = 0:
(Ca VxsVxa)A(—x1 Ve Vxs)A(—x V
————

unit clause

YA (mx2 V —xa) A (X3 V xa)
——
unit clause
3. Derive a(x2) =1, a(xs) = 1:
(CaVxs V) A(=xa Vo Vxs)A(—x V
YA (mx2 V —xa) Az V xa)
—_————

conflict clause

X1 Vo VX3 (Q —x30@1

x201 Q

—x2 V —ixa —xo V —ixg



Conflict clauses as cuts in the implication graph

Definition (separating cut)

A separating cut in a conflict graph is a
minimal set of edges whose removal
breaks all paths from the root nodes to
the conflict node.

» Each cut splits the graph to reason
side and conflict side.

» The set of nodes on reason side
with an edge to conflict side
constitutes a sufficient condition
for the conflict.

> |ts negation is a conflict clause.

-x1 VXV x3

x201 Q

—x2 V —ixg



Conflict clauses as cuts in the implication graph

Definition (separating cut) act

A separating cut in a conflict graph is a
minimal set of edges whose removal

—x1 VX3

breaks all paths from the root nodes to TR et
the conflict node. A
x2@1 x401
» Each cut splits the graph to reason —xp V s —xp V =g
side and conflict side. ¢

» The set of nodes on reason side
with an edge to conflict side
constitutes a sufficient condition
for the conflict.

> |ts negation is a conflict clause.



Clause learning

Observation

Every separating cut in conflict graph
determines a conflict clause ¢ such that
@ — ¢, where ¢ is the input formula.

» The conflict clause can be added
to the input formula without
effecting satisfiability.

> It prunes the search tree.

» This process is referred to as
learning.

» SAT solver is "learning” from its
past mistakes.

x101
—x1 V —ix3
-x1Vox Voxg —x301
x3 V X4
—x1 VgV ox3
xp@1 x401
—x2 V —xy —x2 V —ixy
K



Clause learning

Observation x0l
Every separating cut in conflict graph —x1 Vg
determines a conflict clause ¢ such that
¢ — ¢, where ¢ is the input formula. Ve Vs 0l
x3 V X,
» The conflict clause can be added o1 & LTS ¥ X44@1
to the input formula without v o
effecting satisfiability.
> It prunes the search tree. K
» This process is referred to as
learning. » First cut = conflict
» SAT solver is "learning” from its clause —xj.

past mistakes.



Clause learning

) @1
Observation X

Every separating cut in conflict graph —x1 Vg
determines a conflict clause ¢ such that
@ — ¢, where ¢ is the input formula. Ve Vs 0l

x3 V X4
—x1 V5V x3

» The conflict clause can be added %01 %01
to the input formula without

—xp V —x4 —xp V —xg
effecting satisfiability.
» It prunes the search tree. K
» This process is referred to as
learning. » First cut = conflict
» SAT solver is "learning” from its clause —xj.

ast mistakes. .
P ! » Second cut = conflict

clause —=xp V x3.



Clause learning strategies

v

Different cuts correspond to different conflict clause.

v

Impossible to predict if a clause will be more useful than other.

v

In general smaller clauses are more desirable.

> Less storage space
» Earlier unit propagation

v

Any number of conflict clauses could be learnt.

v

Many SAT solvers learn a single clause with a special property,
an asserting clause.



Asserting clause and UIP

Definition (asserting clause)

Asserting clause is a conflict clause that contains exactly one literal
from the current decision level.

Definition
(unique implication point) Unique implication point (UIP) is any
vertex other than K that is on all paths from the current decision
level vertex to K.

» UIP always exists (at least the decision vertex itself)

> there may be more UIPs

Definition (first UIP)
First UIP is the UIP that is closest to K



Clause learning and backtracking

» Find the conflict clause containing the negation of first UIP as
its single literal from current decision level.

> asserting

» Backtracking with asserting clause
» Backtrack to the second highest decision level from levels of
literals in the conflict clause.
» Equivalently (for asserting clause) to the highest decision level
of its literals, excluding the UIP.
» The newly learnt clause is unit at this decision level = Unit
propagation is immediately triggered.

» Notes:
» If a conflict clause contains only literals from decision level 0,
then the input formula is unsatisfiable.
» If a conflict clause contains a single literal, the backtrack level
is 0.



CDCL Algorithm

procedure CDCL(yp)
a+0
if BCP(yp,a) = NULL then return FALSE

1:

2

3

4: while TRUE do

5: (x,v) <= SELECT (¢, cv)
6 if (x,v) = NULL then return TRUE

7 a—aU{x <+ v}

8 (result, ) <~ BCP(p, @)

o: while not result do

10: (level, ) <= ANALYZE-CONFLICT (¢, cx)
11: if level < 0 then return FALSE

12: BACKTRACK (¢, level)

13 (result, ) <~ BCP(p, @)



CDCL Algorithm

» BCP. Performs unit propagation iteratively. Returns updated
assignment and conflict indicator.

» SELECT. Selects unassigned variable and its polarity. Returns
NULL if all variables are assigned.

» ANALYZE-CONFLICT. Determines backtrack level and
extends ¢ with learned clause(s).

» BACKTRACK. Backtracks to the given decision level. Erases
all assignments made after this level.



CDCL Algorithm

Notes

» Algorithm always terminates.

> Idea of a proof: The algorithm never enters the same decision
level with the same partial assignment twice.



CDCL Algorithm

Notes

» Algorithm always terminates.
> Idea of a proof: The algorithm never enters the same decision
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» Too many learned clauses slow down the solver too much.
» Many of them are not used more than once.



CDCL Algorithm

Notes

» Algorithm always terminates.
> Idea of a proof: The algorithm never enters the same decision
level with the same partial assignment twice.
» Learned clauses can be pruned.
» Too many learned clauses slow down the solver too much.
» Many of them are not used more than once.
» Implication graph can be represented implictly (decision trail
with decision levels and polarity for variables, map of literals
to antecedents).



Computing asserting clause

1. procedure ANALYZE-CONFLICT(yp, @)

2 if decision-level = 0 then return (—1, ¢)

3 ¢ < unsatisfied clause w.r.t. «

4 while c is not asserting do

5: | <— most recently assigned literal in ¢

6 ¢ < RESOLVE(c, Antecedent(!), Var(/))
7 p<—eUc

8 return (LEVEL(c), p)



Computing asserting clause

1. procedure ANALYZE-CONFLICT(yp, @)

2 if decision-level = 0 then return (—1, ¢)

3 ¢ < unsatisfied clause w.r.t. «

4 while c is not asserting do

5: | <— most recently assigned literal in ¢

6 ¢ < RESOLVE(c, Antecedent(!), Var(/))
7 p<—eUc

8 return (LEVEL(c), p)

» RESOLVE(ci, ¢, v) returns resolvent of ¢; and ¢, where x is
the resolution variable.

» LEVEL(c) returns the second highest decision level of literals
in ¢. (Returns 0 is ¢ has only one literal.)
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