Decision Procedures and Verification

Martin Blicha

Charles University

12.3.2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Goal:

- Efficient unit propagation
- Efficient backtracking

► Goal:

- Efficient unit propagation
- Efficient backtracking

Be lazy! Don't do unnecessary work!

► Goal:

- Efficient unit propagation
- Efficient backtracking
- Be lazy! Don't do unnecessary work!

- Lazy data structures
 - Head-tail lists (halfway there)
 - Two watched literals

Efficient Data Structures for DPPL-based algorithm Head-tail lists

- First lazy data structure proposed for SAT; used in SATO solver, '97.
- Each clause maintains two references:
 - head and tail
- Each literal maintains two lists of clauses
 - where it is a head and where it is a tail
- When a literal is falsified ⇒ check only clauses in its occurence lists. Search for an unassigned literal in direction of head (tail):
 - Satisfied literal is encountered \Rightarrow clause is already satisfied.
 - ► Unsatisfied literal is found which is not the head (tail) ⇒ new tail (head).

- ► Unsatisfied literal is found which is the head (tail) ⇒ unit clause.
- Else \Rightarrow conflict clause.

Efficient Data Structures for DPPL-based algorithm Head-tail lists

- First lazy data structure proposed for SAT; used in SATO solver, '97.
- Each clause maintains two references:
 - head and tail
- Each literal maintains two lists of clauses
 - where it is a head and where it is a tail
- When a literal is falsified ⇒ check only clauses in its occurence lists. Search for an unassigned literal in direction of head (tail):
 - Satisfied literal is encountered \Rightarrow clause is already satisfied.
 - ► Unsatisfied literal is found which is not the head (tail) ⇒ new tail (head).

- ► Unsatisfied literal is found which is the head (tail) ⇒ unit clause.
- Else \Rightarrow conflict clause.
- Backtracking requires recovering of the references.

Two watched literals

- Improves head-tail lists
- ▶ Implemented in CHAFF SAT solver, '01.
- Each clause maintains two references:
 - watched literals
- Each literal maintains a list of clauses
 - where it is watched
- ► When a literal is falsified ⇒ check only clauses in its occurence list. Search for an literal which is not falsified.
 - Satisfied literal is encountered \Rightarrow clause is already satisfied.
 - ► Unsatisfied literal is found which is not the other watched literal ⇒ new watched literal.
 - ► Unsatisfied literal is found which is the other watched literal ⇒ unit clause.

• Else \Rightarrow conflict clause.

Two watched literals

- Improves head-tail lists
- ▶ Implemented in CHAFF SAT solver, '01.
- Each clause maintains two references:
 - watched literals
- Each literal maintains a list of clauses
 - where it is watched
- ► When a literal is falsified ⇒ check only clauses in its occurence list. Search for an literal which is not falsified.
 - Satisfied literal is encountered \Rightarrow clause is already satisfied.
 - ► Unsatisfied literal is found which is not the other watched literal ⇒ new watched literal.
 - ► Unsatisfied literal is found which is the other watched literal ⇒ unit clause.

- Else \Rightarrow conflict clause.
- Backtracking does not require any work!

Running example

$$c_1 = \begin{pmatrix} \downarrow & \downarrow \\ x_1 \lor x_2 \lor x_3 \end{pmatrix}$$
$$c_2 = \begin{pmatrix} \neg x_1 \lor x_2 \lor \neg x_4 \end{pmatrix}$$
$$c_3 = \begin{pmatrix} \neg x_1 \lor x_3 \lor \neg x_4 \end{pmatrix}$$

Watched occurences

$$x_1: \{c_1\}$$
 $\neg x_1: \{c_2, c_3\}$ $x_2: \{\}$ $\neg x_2: \{\}$ $x_3: \{c_1\}$ $\neg x_3: \{\}$ $x_4: \{\}$ $\neg x_4: \{c_2, c_3\}$

Running example

Decide $x_1 \mapsto False$ $c_1 = (x_1 \lor x_2 \lor x_3)$ $c_2 = (\neg x_1 \lor x_2 \lor \neg x_4)$ $c_3 = (\neg x_1 \lor x_3 \lor \neg x_4)$

Watched occurences

 $x_1: \{\}$ $\neg x_1: \{c_2, c_3\}$ $x_2: \{c_1\}$ $\neg x_2: \{\}$ $x_3: \{c_1\}$ $\neg x_3: \{\}$ $x_4: \{\}$ $\neg x_4: \{c_2, c_3\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Running example

Decide
$$x_2 \mapsto False$$

 $c_1 = (x_1 \lor x_2 \lor x_3)$
 $c_2 = (\neg x_1 \lor x_2 \lor \neg x_4)$
 $c_3 = (\neg x_1 \lor x_3 \lor \neg x_4)$

Derive $x_3 \mapsto True$

$$c_{1} = \begin{pmatrix} \downarrow & \downarrow \\ x_{2} \lor x_{3} \end{pmatrix}$$
$$c_{2} = \begin{pmatrix} \neg x_{1} \lor x_{2} \lor \neg x_{4} \end{pmatrix}$$
$$c_{3} = \begin{pmatrix} \neg x_{1} \lor x_{3} \lor \neg x_{4} \end{pmatrix}$$

Watched occurences

$$x_1: \{\}$$
 $\neg x_1: \{c_2, c_3\}$ $x_2: \{c_1\}$ $\neg x_2: \{\}$ $x_3: \{c_1\}$ $\neg x_3: \{\}$ $x_4: \{\}$ $\neg x_4: \{c_2, c_3\}$

Watched occurences $x_1: \{\}$ $\neg x_1: \{c_2, c_3\}$ $x_2: \{c_1\}$ $\neg x_2: \{\}$ $x_3: \{c_1\}$ $\neg x_3: \{\}$ $x_4: \{\}$ $\neg x_4: \{c_2, c_3\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Running example

Easy bactracking \Rightarrow erase assignment, keep watched occurences.

$c_1 = \begin{pmatrix} x_1 \lor \overset{\downarrow}{x_2} \lor \overset{\downarrow}{x_3} \end{pmatrix}$
$c_2 = \left(\neg x_1 \lor x_2 \lor \neg x_4 \right)$
$c_3 = (\neg x_1 \lor x_3 \lor \neg x_4)$

Watched occurences

 $x_1: \{\}$ $\neg x_1: \{c_2, c_3\}$ $x_2: \{c_1\}$ $\neg x_2: \{\}$ $x_3: \{c_1\}$ $\neg x_3: \{\}$ $x_4: \{\}$ $\neg x_4: \{c_2, c_3\}$

Decision heuristics

Decision heuristic

Decision heuristic in a SAT solver is a strategy by which the variables and the value given to them are chosen.

- Jeroslow-Wang
- Dynamic Largest Individual Sum
- Variable State Independent Decaying Sum
- Berkmin
- Clause-Move-To-Front
- ▶ ...

Jeroslow-Wang

- Idea: prefer literals that appear frequently in small clauses.
- Compute a score for each literal as $J(I) = \sum_{C \in \omega, I \in C} 2^{-|C|}$.
- ▶ When making a decision choose a literal with highest score.
- Can be both static and dynamic:
 - static Fast (single computation at the beginning), but does not reflect how the situation evolves.

 dynamic - Makes better decisions but also imposes large overhead at the decision point.

Variable State Independent Decaying Sum (VSIDS)

- ▶ SAT solver CHAFF, 2001
- conflict driven heuristic: Gives preferences to literals in newly learned clauses.
- Every literal has a score (based on how many occurences there are).

- Score of literals in newly learned clauses increases.
- The score is periodically divided by d > 1.

Berkmin

- member of a family of *clause-based* heuristics
- ► SAT solver BERKMIN, 2002
- Score for every variable (divided) and for every literal (not divided)
- Keeps stack of conflict clauses.
- Picks a variable with highest score from unresolved clause from top of the stack.

Assigns a polarity based on the literal score.

Random restarts

- Inspiration from stochastic search
- Few bad decisions at the beginning get SAT solver stuck in unperspective subtree
- Chance to do better (more informed) decisions at the beginning
- Keep (or not) the learned clauses
- Example of a strategy: Geometric sequence of number of conflicts after which a restart is performed

Preprocessing

- Tries to simplified the set of input clauses
- Applied before the input goes to CDCL algorithm
 - Also at a restart
- Trade-off between time spent in preprocessing and its effect
- Examples:
 - (bounded) variable elimination by clause distribution

- blocked clause elimination
- subsumption
- self-subsumption

SAT solver toolbox overview

- DPLL algorithm
- clause learning
- two watched literals

- decision heuristics
- restarts
- preprocessing

Solvers based on stochastic (local) search

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GSAT

- Selman et al., 1992
- Greedy traversing among complete valuations of variables with restarts
- Incomplete
- 1: procedure GSAT(φ , MAX_TRIES, MAX_FLIPS)
- 2: **for** $i = 1, 2, ..., MAX_{-}TRIES$ **do**
- 3: $\alpha \leftarrow random full assignment$
- 4: for $j = 1, 2, \dots, MAX_FLIPS$ do
- 5: **if** $\forall c \in \varphi : c$ is satisfied by α **then return** TRUE
- 6: choose $x \in Var(\varphi)$ such that flipping polarity of x leads to the highest number of satisfied clauses
- 7: flip polarity of x in α
- 8: return FALSE

WALKSAT

- Selman et al., 1994
- Random walk with probability p
- Greedy step with probablity 1 p

1: procedure WALKSAT(φ , MAX_TRIES, MAX_FLIPS) for $i = 1, 2, \ldots, MAX_TRIES$ do 2: $\alpha \leftarrow random full assignment$ 3: for $j = 1, 2, \ldots, MAX_FLIPS$ do 4: if $\forall c \in \varphi : c$ is satisfied by α then return TRUE 5: choose $c \in \varphi$, random not satisfied clause 6: if RAND(0,1) < p then choose random $x \in Var(c)$ 7: else choose $x \in Var(c)$ such that flipping polarity 8: of x leads to the highest number of satisfied clauses flip polarity of x in α 9:

return FALSE 10:

Message passing algorithms

 Iteratively change value of a variable according to effect of related clauses

Factor graph for a CNF formula φ is $G_F(\varphi) = (V_F, E_F)$ where:

and $I = \{1, 2, ..., n\}$ indexes clauses of φ .

Variable occurrence indication

- $J_x^i = 1$ if $x \in Var(\varphi)$ has a *negative* occurrence in c_i
- $J_x^i = -1$ if $x \in Var(\varphi)$ has a *positive* occurrence in c_i
- ► $V(x) = \{i \mid i \in I \land x \in Var(c_i)\}$ for $x \in Var(\varphi)$
- $\blacktriangleright V(i) = \{x \mid x \in Var(\varphi) \land x \in Var(c_i)\} \text{ for } i \in I$
 - V⁺(x), V⁻(x), V⁺(i), V⁻(i) defined analogically for positive and negative occurrences

Warning propagation

- u_{i→x} ∈ {0,1} for x ∈ Var(φ) and i ∈ I is called a warning
 u_{i→x} = 1 ... a message from c_i telling x to adopt the correct value
- ► Warning update rule: $u_{i \to x} = \prod_{y \in V(i) \setminus \{x\}} \Theta(-J_y^i \sum_{j \in V(y) \setminus \{i\}} J_y^j \ u_{j \to y})$, where $\Theta(r) = 0$ if $r \le 0$ and $\Theta(r) = 1$ if r > 0.
- 1: procedure Warning-propagation(φ , max_sweeps)

2: let
$$G_F(\varphi) = (V_F, E_F)$$
 a factor graph for φ

3: for $(x, i) \in E_F$ do

4:
$$u_{i \to x}(0) \leftarrow 0 \text{ or } 1 \text{ with probability } 0.5$$

5: **for**
$$t = 1, 2, ..., MAX_SWEEPS$$
 do
6: **for** $(x, i) \in E_F$ **do**
7: $u_{i \to x}(t) \leftarrow \prod_{y \in V(i) \setminus \{x\}} \Theta(-J_y^i \sum_{j \in V(y) \setminus \{i\}} J_y^j \ u_{j \to y}(t-1))$

8: **if** $(\forall (x, i) \in E_F) u_{i \to x}(t) = u_{i \to x}(t-1)$ then return TRUE

9: return FALSE

Warning inspired decimation

• Preferred value for variable x: $H_x = -\sum_{i \in M(x)} J_x^i u_{i \to x}$

- ► Contradiction indicator for variable x: $c_x = 1$ if $(\sum_{i \in V^+(x)} u_{i \to x})(\sum_{i \in V^-(x)} u_{i \to x}) > 0), c_x = 0$ otherwise.
- 1: procedure Warning-Inspired-decimation(φ , MAX_SWEEPS)
- 2: while $\varphi \neq True$ do
- 3: $\alpha = \emptyset$
- 4: **if not** WARNING-PROPAGATION(φ , *MAX_SWEEPS*) **then return** UNKNOWN
- 5: **if** $\exists x \in Var(\varphi) : c_x = 1$ then return UNSAT
- 6: for $x \in Var(\varphi)$ do

7: **if**
$$H_x > 0$$
 then $\alpha \leftarrow \alpha \cup \{x \mapsto 1\}$

- 8: else if $H_x < 0$ then $\alpha \leftarrow \alpha \cup \{x \mapsto 0\}$
- 9: $\varphi \leftarrow \varphi[\alpha]$
- 10: return SAT

Properties of message passing

Convergence

If the factor graph of a formula is a tree, then warning propagation converges after $|Var(\varphi)|$ iterations. If $c_x = 1$ for some $x \in Var(\varphi)$ then φ is unsatisfiable, otherwise it is satisfiable.

- Other algorithms based on message passing
 - Belief propagation (BP)
 - Survey propagation / survey inspired decimation