Decision Procedures and Verification

Martin Blicha

Charles University

12.3.2018

Efficient Data Structures for DPPL-based algorithm

» Goal:
» Efficient unit propagation
» Efficient backtracking

Efficient Data Structures for DPPL-based algorithm

» Goal:
» Efficient unit propagation
» Efficient backtracking

» Be lazy! Don't do unnecessary work!

Efficient Data Structures for DPPL-based algorithm

» Goal:
» Efficient unit propagation
» Efficient backtracking

» Be lazy! Don't do unnecessary work!
» Lazy data structures

» Head-tail lists (halfway there)
» Two watched literals

Efficient Data Structures for DPPL-based algorithm

Head-tail lists

» First lazy data structure proposed for SAT; used in SATO
solver, ‘O7.
» Each clause maintains two references:
» head and tail
» Each literal maintains two lists of clauses
» where it is a head and where it is a tail
» When a literal is falsified = check only clauses in its
occurence lists. Search for an unassigned literal in direction of
head (tail):
» Satisfied literal is encountered = clause is already satisfied.
» Unsatisfied literal is found which is not the head (tail) = new
tail (head).
» Unsatisfied literal is found which is the head (tail) = unit

clause.
» Else = conflict clause.

Efficient Data Structures for DPPL-based algorithm

Head-tail lists

» First lazy data structure proposed for SAT; used in SATO
solver, ‘97.
» Each clause maintains two references:
» head and tail
» Each literal maintains two lists of clauses
» where it is a head and where it is a tail

» When a literal is falsified = check only clauses in its
occurence lists. Search for an unassigned literal in direction of
head (tail):

» Satisfied literal is encountered = clause is already satisfied.

» Unsatisfied literal is found which is not the head (tail) = new
tail (head).

» Unsatisfied literal is found which is the head (tail) = unit
clause.

» Else = conflict clause.

» Backtracking requires recovering of the references.

Efficient Data Structures for DPPL-based algorithm

Two watched literals

> Improves head-tail lists
» Implemented in CHAFF SAT solver, ‘01.
» Each clause maintains two references:
» watched literals
» Each literal maintains a list of clauses
» where it is watched
> When a literal is falsified = check only clauses in its

occurence list. Search for an literal which is not falsified.

» Satisfied literal is encountered = clause is already satisfied.

» Unsatisfied literal is found which is not the other watched
literal = new watched literal.

» Unsatisfied literal is found which is the other watched literal =
unit clause.

» Else = conflict clause.

Efficient Data Structures for DPPL-based algorithm

Two watched literals

> Improves head-tail lists
» Implemented in CHAFF SAT solver, ‘01.
» Each clause maintains two references:
» watched literals
» Each literal maintains a list of clauses
» where it is watched
> When a literal is falsified = check only clauses in its

occurence list. Search for an literal which is not falsified.
» Satisfied literal is encountered = clause is already satisfied.
» Unsatisfied literal is found which is not the other watched
literal = new watched literal.
» Unsatisfied literal is found which is the other watched literal =
unit clause.
» Else = conflict clause.

» Backtracking does not require any work!

Watched literals

Running example

c = (Xl V xo V X3)
= ("x1VxV-xg)

c3 = (ﬂXl V x3V —|X4)

X1
X2
X3
X4

Watched occurences

{a}
{3
{a}
e

_|X1
X2
_|X3
X4

. {C2, C3}
{)
{3

: {e, 3}

Watched literals

Running example

Decide x; — False

|

c = (Xl V Xo \/X3)

|

V xo V —\X4)

|

V x3V —|X4)

C2:(

a =

X1
X2
X3
X4

Watched occurences

- {} -x1: {¢, 3}
{a} -x2: {}
{at -x3: {}
- {} -xq4: {¢2, 3}

Watched literals

Running example

Decide x» — False

= (Xl V Xo \/X3)

|

V xo V —\X4)

|

V x3V —|X4)

C2:(
C3:(

Derive x3 — True

|

C1:(X1\/X2\/)

C2:(\/X2V—|X4)
C?,:(l V \/‘%(4)

X1:
X2
X3:
X4

X1:
X2:
X3
X4

Watched occurences

{ —x1: {c2, 3}
{ai} —x: {}
{a} -x3: {}
{} X4 {CQ,C3}

Watched occurences

i —x1: {e, 3}
{ai} —x: {}
{a} —x3: {}
{} -xa: {2, c3}

Watched literals

Running example

Easy bactracking = erase assignment, keep watched occurences.

Watched occurences
‘= (Xl \/X2 \/X3) X1: {} X7 {Cg C3}

xo: {1} 2 {}
x3: {a1} —xs: {}

x4 {} —xg: {c2, 3}

C = (ﬂXl V xo V —|X4)

Cc3 = (ﬁXl V x3V —|X4)

Decision heuristics

Decision heuristic
Decision heuristic in a SAT solver is a strategy by which the
variables and the value given to them are chosen.

v

Jeroslow-Wang

v

Dynamic Largest Individual Sum

v

Variable State Independent Decaying Sum

Berkmin

v

Clause-Move-To-Front

v

Jeroslow-Wang

v

Idea: prefer literals that appear frequently in small clauses.

Compute a score for each literal as J(/) = 3 2-1¢l.
Cep,leC

When making a decision choose a literal with highest score.

v

v

v

Can be both static and dynamic:
» static - Fast (single computation at the beginning), but does
not reflect how the situation evolves.
» dynamic - Makes better decisions but also imposes large
overhead at the decision point.

Variable State Independent Decaying Sum (VSIDS)

» SAT solver CHAFF, 2001

» conflict driven heuristic: Gives preferences to literals in newly
learned clauses.

» Every literal has a score (based on how many occurences there
are).
» Score of literals in newly learned clauses increases.

> The score is periodically divided by d > 1.

Berkmin

» member of a family of clause-based heuristics

» SAT solver BERKMIN, 2002

» Score for every variable (divided) and for every literal (not
divided)

» Keeps stack of conflict clauses.

» Picks a variable with highest score from unresolved clause
from top of the stack.

» Assigns a polarity based on the literal score.

Random restarts

> Inspiration from stochastic search

> Few bad decisions at the beginning get SAT solver stuck in
unperspective subtree

» Chance to do better (more informed) decisions at the
beginning
» Keep (or not) the learned clauses

» Example of a strategy: Geometric sequence of number of
conflicts after which a restart is performed

Preprocessing

v

Tries to simplified the set of input clauses

v

Applied before the input goes to CDCL algorithm
» Also at a restart

v

Trade-off between time spent in preprocessing and its effect

v

Examples:

v

(bounded) variable elimination by clause distribution
blocked clause elimination

subsumption

self-subsumption

vV VvYyy

SAT solver toolbox overview

» DPLL algorithm

clause learning

v

two watched literals

v

decision heuristics

v

restarts

v

v

preprocessing

SOLVERS BASED ON
STOCHASTIC (LOCAL) SEARCH

GSAT

» Selman et al., 1992

» Greedy traversing among complete valuations of variables with
restarts

» Incomplete

1. procedure GSAT (o, MAX_TRIES, MAX_FLIPS)

2 fori=1,2,..., MAX_TRIES do

3: « < random full assignment

4: for j=1,2,..., MAX_FLIPS do

5: if Vc € o : c is satisfied by o then return TRUE

6 choose x € Var(y) such that flipping polarity of x
leads to the highest number of satisfied clauses
flip polarity of x in «

8: return FALSE

~

WALKSAT

» Selman et al., 1994
» Random walk with probability p
» Greedy step with probablity 1 — p

1. procedure WALKSAT (p, MAX_TRIES, MAX_FLIPS)

2 fori=1,2,..., MAX_TRIES do

3 a < random full assignment

4 for j=1,2,..., MAX_FLIPS do

5: if Yc € ¢ : c is satisfied by a then return TRUE

6 choose ¢ € ¢, random not satisfied clause

7 if RAND(0,1) < p then choose random x € Var(c)

8 else choose x € Var(c) such that flipping polarity
of x leads to the highest number of satisfied clauses

9: flip polarity of x in «
10: return FALSE

Message passing algorithms

> lteratively change value of a variable according to effect of
related clauses

Factor graph for a CNF formula ¢ is Ge(¢) = (VE, EF) where:
» Ve = Var(p)Ul,
» Er ={{x,i} | x € Var(p) Ni €l Nx € Var(c;)}, where ¢; is
a clause of ¢,

and I ={1,2,...,n} indexes clauses of ¢.

Variable occurrence indication

» Ji =1if x € Var(p) has a negative occurrence in c;
Ji = —1if x € Var(¢) has a positive occurrence in ¢;
V(x)={ilielAxe Var(c)} for x € Var(p)
() = {x | x € Var(p) A x € Var(c;)} for i €|
V*t(x), V= (x), V*(i), V= (i) defined analogically for positive
and negative occurrences

vvyy

Warning propagation

> Uiy € {0,1} for x € Var(yp) and i € | is called a warning
» ui_x =1 ...a message from ¢; telling x to adopt the correct
value _
» Warning update rule: u;j_,, = H @(—J)", o B ouisy),
yEVINx) JEVInE

where ©(r) =0if r <0and ©(r) =1if r > 0.

1. procedure WARNING-PROPAGATION(, MAX_SWEEPS)
2 let Ge(p) = (VE, EF) a factor graph for ¢

3: for (x,i) € EF do

4: Ui—x(0) <= 0 or 1 with probability 0.5
5 for t =1,2,..., MAX_SWEEPS do

6 for (x,i) € EF do

7 bion(t) & T1 (S S B ujy(t—1))

yeV(i\{x} JEV\i}
if (V(x,)€EF)uj—x(t) = ujx(t—1) then return TRUE
9: return FALSE

©

Warning inspired decimation

» Preferred value for variable x: Hy = — > J)’; Uj_sx
ieV(x)
» Contradiction indicator for variable x: ¢, = 1 if

(> uimx)(Y. uisx) > 0), ¢x = 0 otherwise.

ievt(x) eV (x)

1: procedure WARNING-INSPIRED-DECIMATION(¢p, MAX_SWEEPS)

2 while ¢ # True do

3: a=10

4: if not WARNING-PROPAGATION(¢, MAX_SWEEPS) then
return UNKNOWN

if Ix € Var(p) : ¢x = 1 then return UNSAT

for x € Var(y) do
if Hy >0 then a < aU{x — 1}
else if H, <0 then a + aU{x — 0}
p < ¢la]
10: return SAT

e N O

Properties of message passing

Convergence

If the factor graph of a formula is a tree, then warning propagation
converges after |Var(yp)| iterations. If ¢, = 1 for some x € Var(y)
then ¢ is unsatisfiable, otherwise it is satisfiable.

» Other algorithms based on message passing
» Belief propagation (BP)
» Survey propagation / survey inspired decimation

	Solvers based on stochastic (local) search

