
Decision Procedures and Verification

Martin Blicha

Charles University

12.3.2018

Efficient Data Structures for DPPL-based algorithm

I Goal:
I Efficient unit propagation
I Efficient backtracking

I Be lazy! Don’t do unnecessary work!
I Lazy data structures

I Head-tail lists (halfway there)
I Two watched literals

Efficient Data Structures for DPPL-based algorithm

I Goal:
I Efficient unit propagation
I Efficient backtracking

I Be lazy! Don’t do unnecessary work!

I Lazy data structures
I Head-tail lists (halfway there)
I Two watched literals

Efficient Data Structures for DPPL-based algorithm

I Goal:
I Efficient unit propagation
I Efficient backtracking

I Be lazy! Don’t do unnecessary work!
I Lazy data structures

I Head-tail lists (halfway there)
I Two watched literals

Efficient Data Structures for DPPL-based algorithm
Head-tail lists

I First lazy data structure proposed for SAT; used in SATO
solver, ‘97.

I Each clause maintains two references:
I head and tail

I Each literal maintains two lists of clauses
I where it is a head and where it is a tail

I When a literal is falsified ⇒ check only clauses in its
occurence lists. Search for an unassigned literal in direction of
head (tail):

I Satisfied literal is encountered ⇒ clause is already satisfied.
I Unsatisfied literal is found which is not the head (tail) ⇒ new

tail (head).
I Unsatisfied literal is found which is the head (tail) ⇒ unit

clause.
I Else ⇒ conflict clause.

I Backtracking requires recovering of the references.

Efficient Data Structures for DPPL-based algorithm
Head-tail lists

I First lazy data structure proposed for SAT; used in SATO
solver, ‘97.

I Each clause maintains two references:
I head and tail

I Each literal maintains two lists of clauses
I where it is a head and where it is a tail

I When a literal is falsified ⇒ check only clauses in its
occurence lists. Search for an unassigned literal in direction of
head (tail):

I Satisfied literal is encountered ⇒ clause is already satisfied.
I Unsatisfied literal is found which is not the head (tail) ⇒ new

tail (head).
I Unsatisfied literal is found which is the head (tail) ⇒ unit

clause.
I Else ⇒ conflict clause.

I Backtracking requires recovering of the references.

Efficient Data Structures for DPPL-based algorithm
Two watched literals

I Improves head-tail lists

I Implemented in Chaff SAT solver, ‘01.
I Each clause maintains two references:

I watched literals

I Each literal maintains a list of clauses
I where it is watched

I When a literal is falsified ⇒ check only clauses in its
occurence list. Search for an literal which is not falsified.

I Satisfied literal is encountered ⇒ clause is already satisfied.
I Unsatisfied literal is found which is not the other watched

literal ⇒ new watched literal.
I Unsatisfied literal is found which is the other watched literal ⇒

unit clause.
I Else ⇒ conflict clause.

I Backtracking does not require any work!

Efficient Data Structures for DPPL-based algorithm
Two watched literals

I Improves head-tail lists

I Implemented in Chaff SAT solver, ‘01.
I Each clause maintains two references:

I watched literals

I Each literal maintains a list of clauses
I where it is watched

I When a literal is falsified ⇒ check only clauses in its
occurence list. Search for an literal which is not falsified.

I Satisfied literal is encountered ⇒ clause is already satisfied.
I Unsatisfied literal is found which is not the other watched

literal ⇒ new watched literal.
I Unsatisfied literal is found which is the other watched literal ⇒

unit clause.
I Else ⇒ conflict clause.

I Backtracking does not require any work!

Watched literals
Running example

c1 = (

y
x1 ∨ x2 ∨

y
x3)

c2 = (

y
¬x1 ∨ x2 ∨

y
¬x4)

c3 = (

y
¬x1 ∨ x3 ∨

y
¬x4)

Watched occurences

x1: {c1}
x2: {}
x3: {c1}
x4: {}

¬x1: {c2, c3}
¬x2: {}
¬x3: {}
¬x4: {c2, c3}

Watched literals
Running example

Decide x1 7→ False

c1 = (x1 ∨

y
x2 ∨

y
x3)

c2 = (

y
¬x1 ∨ x2 ∨

y
¬x4)

c3 = (

y
¬x1 ∨ x3 ∨

y
¬x4)

Watched occurences

x1: {}
x2: {c1}
x3: {c1}
x4: {}

¬x1: {c2, c3}
¬x2: {}
¬x3: {}
¬x4: {c2, c3}

Watched literals
Running example

Decide x2 7→ False

c1 = (x1 ∨

y
x2 ∨

y
x3)

c2 = (

y
¬x1 ∨ x2 ∨

y
¬x4)

c3 = (

y
¬x1 ∨ x3 ∨

y
¬x4)

Watched occurences

x1: {}
x2: {c1}
x3: {c1}
x4: {}

¬x1: {c2, c3}
¬x2: {}
¬x3: {}
¬x4: {c2, c3}

Derive x3 7→ True

c1 = (x1 ∨

y
x2 ∨

y
x3)

c2 = (

y
¬x1 ∨ x2 ∨

y
¬x4)

c3 = (

y
¬x1 ∨ x3 ∨

y
¬x4)

Watched occurences

x1: {}
x2: {c1}
x3: {c1}
x4: {}

¬x1: {c2, c3}
¬x2: {}
¬x3: {}
¬x4: {c2, c3}

Watched literals
Running example

Easy bactracking ⇒ erase assignment, keep watched occurences.

c1 = (x1 ∨

y
x2 ∨

y
x3)

c2 = (

y
¬x1 ∨ x2 ∨

y
¬x4)

c3 = (

y
¬x1 ∨ x3 ∨

y
¬x4)

Watched occurences

x1: {}
x2: {c1}
x3: {c1}
x4: {}

¬x1: {c2, c3}
¬x2: {}
¬x3: {}
¬x4: {c2, c3}

Decision heuristics

Decision heuristic
Decision heuristic in a SAT solver is a strategy by which the
variables and the value given to them are chosen.

I Jeroslow-Wang

I Dynamic Largest Individual Sum

I Variable State Independent Decaying Sum

I Berkmin

I Clause-Move-To-Front

I . . .

Jeroslow-Wang

I Idea: prefer literals that appear frequently in small clauses.

I Compute a score for each literal as J(l) =
∑

C∈ϕ,l∈C
2−|C |.

I When making a decision choose a literal with highest score.
I Can be both static and dynamic:

I static - Fast (single computation at the beginning), but does
not reflect how the situation evolves.

I dynamic - Makes better decisions but also imposes large
overhead at the decision point.

Variable State Independent Decaying Sum (VSIDS)

I SAT solver Chaff, 2001

I conflict driven heuristic: Gives preferences to literals in newly
learned clauses.

I Every literal has a score (based on how many occurences there
are).

I Score of literals in newly learned clauses increases.

I The score is periodically divided by d > 1.

Berkmin

I member of a family of clause-based heuristics

I SAT solver BerkMin, 2002

I Score for every variable (divided) and for every literal (not
divided)

I Keeps stack of conflict clauses.

I Picks a variable with highest score from unresolved clause
from top of the stack.

I Assigns a polarity based on the literal score.

Random restarts

I Inspiration from stochastic search

I Few bad decisions at the beginning get SAT solver stuck in
unperspective subtree

I Chance to do better (more informed) decisions at the
beginning

I Keep (or not) the learned clauses

I Example of a strategy: Geometric sequence of number of
conflicts after which a restart is performed

Preprocessing

I Tries to simplified the set of input clauses
I Applied before the input goes to CDCL algorithm

I Also at a restart

I Trade-off between time spent in preprocessing and its effect
I Examples:

I (bounded) variable elimination by clause distribution
I blocked clause elimination
I subsumption
I self-subsumption

SAT solver toolbox overview

I DPLL algorithm

I clause learning

I two watched literals

I decision heuristics

I restarts

I preprocessing

Solvers based on
stochastic (local) search

GSAT

I Selman et al., 1992

I Greedy traversing among complete valuations of variables with
restarts

I Incomplete

1: procedure GSAT(ϕ,MAX TRIES ,MAX FLIPS)
2: for i = 1, 2, . . . ,MAX TRIES do
3: α← random full assignment
4: for j = 1, 2, . . . ,MAX FLIPS do
5: if ∀c ∈ ϕ : c is satisfied by α then return TRUE

6: choose x ∈ Var(ϕ) such that flipping polarity of x
leads to the highest number of satisfied clauses

7: flip polarity of x in α

8: return FALSE

WalkSAT

I Selman et al., 1994

I Random walk with probability p

I Greedy step with probablity 1− p

1: procedure WalkSAT(ϕ,MAX TRIES ,MAX FLIPS)
2: for i = 1, 2, . . . ,MAX TRIES do
3: α← random full assignment
4: for j = 1, 2, . . . ,MAX FLIPS do
5: if ∀c ∈ ϕ : c is satisfied by α then return TRUE

6: choose c ∈ ϕ, random not satisfied clause
7: if RAND(0, 1) < p then choose random x ∈ Var(c)
8: else choose x ∈ Var(c) such that flipping polarity

of x leads to the highest number of satisfied clauses

9: flip polarity of x in α

10: return FALSE

Message passing algorithms

I Iteratively change value of a variable according to effect of
related clauses

Factor graph for a CNF formula ϕ is GF (ϕ) = (VF ,EF) where:

I VF = Var(ϕ) ∪ I ,
I EF = {{x , i} | x ∈ Var(ϕ) ∧ i ∈ I ∧ x ∈ Var(ci)}, where ci is

a clause of ϕ,

and I = {1, 2, . . . , n} indexes clauses of ϕ.

Variable occurrence indication

I J ix = 1 if x ∈ Var(ϕ) has a negative occurrence in ci
I J ix = −1 if x ∈ Var(ϕ) has a positive occurrence in ci
I V (x) = {i | i ∈ I ∧ x ∈ Var(ci)} for x ∈ Var(ϕ)
I V (i) = {x | x ∈ Var(ϕ) ∧ x ∈ Var(ci)} for i ∈ I

I V+(x),V−(x),V+(i),V−(i) defined analogically for positive
and negative occurrences

Warning propagation
I ui→x ∈ {0, 1} for x ∈ Var(ϕ) and i ∈ I is called a warning

I ui→x = 1 . . . a message from ci telling x to adopt the correct
value

I Warning update rule: ui→x =
∏

y ∈V (i)\{x}

Θ(−J iy
∑

j ∈V (y)\{i}

J jy uj→y),

where Θ(r) = 0 if r ≤ 0 and Θ(r) = 1 if r > 0.

1: procedure Warning-propagation(ϕ,MAX SWEEPS)
2: let GF (ϕ) = (VF ,EF) a factor graph for ϕ
3: for (x , i) ∈ EF do
4: ui→x(0)← 0 or 1 with probability 0.5

5: for t = 1, 2, . . . ,MAX SWEEPS do
6: for (x , i) ∈ EF do
7: ui→x(t)←

∏
y ∈V (i)\{x}

Θ(−J iy
∑

j ∈V (y)\{i}

J jy uj→y (t − 1))

8: if (∀(x , i)∈EF)ui→x(t) = ui→x(t−1) then return TRUE

9: return FALSE

Warning inspired decimation
I Preferred value for variable x : Hx = −

∑
i∈V (x)

J ix ui→x

I Contradiction indicator for variable x: cx = 1 if
(

∑
i∈V+(x)

ui→x)(
∑

i∈V−(x)

ui→x) > 0), cx = 0 otherwise.

1: procedure Warning-inspired-decimation(ϕ,MAX SWEEPS)
2: while ϕ 6= True do
3: α = ∅
4: if not Warning-propagation(ϕ,MAX SWEEPS) then

return UNKNOWN
5: if ∃x ∈ Var(ϕ) : cx = 1 then return UNSAT

6: for x ∈ Var(ϕ) do
7: if Hx > 0 then α← α ∪ {x 7→ 1}
8: else if Hx < 0 then α← α ∪ {x 7→ 0}
9: ϕ← ϕ[α]

10: return SAT

Properties of message passing

Convergence

If the factor graph of a formula is a tree, then warning propagation
converges after |Var(ϕ)| iterations. If cx = 1 for some x ∈ Var(ϕ)
then ϕ is unsatisfiable, otherwise it is satisfiable.

I Other algorithms based on message passing
I Belief propagation (BP)
I Survey propagation / survey inspired decimation

	Solvers based on stochastic (local) search

