
Decision Procedures and Verification

Martin Blicha

Charles University

19.3.2018

Binary Decision Diagrams
(BDDs)

Representation of Boolean functions

I Propositional formulas represent Boolean function
I ϕ over n variables defines a Boolean function

B : {0, 1}n → {0, 1}

I Single Boolean function has infinitely many representations as
propositional formula

I ϕ = x1 ∧ (x2 ∨ x3) and ψ = (x1 ∧ x2) ∨ (x1 ∧ x3)
I ϕ and ψ are equivalent formulas, but different syntactically

I Unambiguous representation required:
I One Boolean function → (syntactically) single representation

Binary decision tree

Definition (Binary decision tree)

Let ϕ be a propositional formula with Var(ϕ) = {x1, x2, . . . , xn}.
Assume fixed ordering of variables: x1, x2, . . . , xn.
Binary decision tree for ϕ w.r.t. given ordering of variables is a
complete ordered binary tree with n + 1 levels where

I Nodes at level i are assigned variable xi .

I Leaves are assigned either 0 or 1 (False or True).

I An edge connecting node xi and its left successor correspond
to an assignment α(xi) = 0.

I An edge connecting node xi and its right successor correspond
to an assignment α(xi) = 1.

I A path from the root to a leave determines a complete
valuation α of Var(ϕ) and the leave is assigned truth value
α(ϕ).

Binary decision tree
Example

I Consider ϕ = (x1 ∧ x2) ∨ (¬x1 ∧ x3)
I with ordering of the variables x1, x2, x3

x1

x2 x2

α(x1) = 0 α(x1) = 1

x3 x3 x3 x3

α(x2) = 0 α(x2) = 1 α(x2) = 0 α(x2) = 1

0 1 0 1 0 0 1 1

α(x3) = 1 α(x3) = 0

Reductions of BDT

I Reduction (i): Contract leaves to two unique leaves: 0 and 1.

x1

x2 x2

α(x1) = 0 α(x1) = 1

x3 x3 x3 x3

α(x2) = 0 α(x2) = 1 α(x2) = 0 α(x2) = 1

0 1

α(x3) = 0
α(x3) = 1

Reductions of BDT

I Reduction (ii): Merge isomorphic subtrees.

Definition (isomorphic subtrees)

Leaves representing the same value are isomorphic subtrees.
Subtrees whose roots represent the same variable and their left and
right subtrees respectively are isomorphic, are isomorphic as well.

Reductions of BDT

x1

x2 x2

α(x1) = 0 α(x1) = 1

x3 x3 x3 x3

α(x2) = 0 α(x2) = 1

0 1

α(x3) = 0
α(x3) = 1

x1

x2 x2

α(x1) = 0 α(x1) = 1

x3 x3 x3

α(x2) = 1

0 1

α(x3) = 1

Reductions of BDT

I Reduction (iii): Removing redundant nodes

Definition (redundant node)

Node v in a binary decision tree is redundant if all the valuations
determined by paths going through v give the same truth value
after changing valuation of v.

Reductions of BDT

x1

x2 x2

α(x1) = 0 α(x1) = 1

x3 x3 x3

α(x2) = 1

0 1

α(x3) = 1

x1

x2

α(x1) = 1

x3

α(x1) = 0

0 1

α(x2) = 0 α(x2) = 1

α(x3) = 0
α(x3) = 1

Reductions of BDT

I Reductions (ii) and (iii) are repeated as long as they can be
applied.

I Result is a binary decision diagram - BDD
I Also called (reduced) ordered binary decision diagram -

(R)OBDD.

Lemma
Formulas ϕ and ψ representing the same Boolean function have
the same BDDs for the same ordering of variables.

I BDD is a compact structure for representing all the satisfying
and falsifying valuations of a formula.

Inductive construction of BDD

I Inductive according to the structure of the formula
I Construct BDD for the formula from BDDs of its subformulas.
I More efficient

I Let Bϕ be a Boolean function determined by ϕ and let Bψ be
a Boolean function determined by ψ. Let BDD Bϕ and BDD
Bψ be corresponding BDDs.

Definition (Boolean function restriction)

Bϕ|x=0 and Bϕ|x=1 respectively denotes Boolean function Bϕ

after assigning 0 and 1 respectively to variable x. Bϕ|x=0 and
Bϕ|x=1 are restrictions of Bϕ w.r.t. variable x .

Construction of restriction in BDD

x1

Bϕ

x2

x3

0 1

x1

Bϕ|x2=0

x3

0 1

x1

Bϕ|x2=1

x3

0 1

Inductive construction of BDD

Let u be a root of BDD Bϕ and v be a root of BDD Bψ. Let ⊗
stand for a binary connective. Then BDD for ϕ⊗ ψ is defined
recursively as follows:

1. If u and v are both leaves then BDD Bϕ⊗Bψ is a leaf with
value val(u)⊗val(v)

2. If var(u) = var(v) = x , do Shannon expansion:
Bϕ⊗Bψ = (¬x∧(Bϕ|x=0⊗Bψ|x=0))∨(x∧(Bϕ|x=1⊗Bψ|x=1))

3. If var(u) 6= var(v) (and w.l.o.g. var(u) = x precedes var(v))
then do a modified Shannon expansion:
Bϕ⊗Bψ = (¬x ∧ (Bϕ|x=0 ⊗ Bψ)) ∨ (x ∧ (Bϕ|x=1 ⊗ Bψ))

Shannon expansion
Notes

I BDD Bϕ⊗Bψ after Shannon expansion has new root w with
var(w) = x = var(u) = var(v) with left (negative) child BDD
Bϕ|x=0 ⊗ Bψ|x=0 and with right (positive) child BDD
Bϕ|x=1 ⊗ Bψ|x=1

I BDD Bϕ⊗Bψ after modified Shannon expansion has new root
w with var(w) = x = var(u) with left (negative) child BDD
Bϕ|x=0 ⊗ Bψ and with right (positive) child BDD
Bϕ|x=1 ⊗ Bψ

I Note that we assumed that var(u) precedes var(v) in the
variable ordering, thus var(u) is not present in BDD Bψ.

Inductive construction of BDD
Example

I Assume BDD Bϕ for ϕ = (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) and BDD
Bψ for ψ = ¬x2.

I Construct BDD for ϕ ∨ ψ with variable ordering x1, x2.

x1Bϕ

x2 x2

0 1

x2Bψ

01

Inductive construction of BDD
example

I Bϕ ∨ Bψ = (¬x1 ∧ (Bϕ|x1=0 ∨ Bψ) ∨ (x1 ∧ (Bϕ|x1=1 ∨ Bψ)))

x1Bϕ ∨ Bψ

BDD Bϕ|x1=0 ∨ Bψ BDD Bϕ|x1=1 ∨ Bψ

I BDD Bϕ|x1=0 ∨ Bψ

x2

Bϕ|x1=0

01

x2

Bψ

01

x2

Bϕ|x1=0 ∨ Bψ

01

Inductive construction of BDD
example

I BDD Bϕ|x1=1 ∨ Bψ

x2

Bϕ|x1=1

0 1

x2

Bψ

01

1

Bϕ|x1=1 ∨ Bψ

I Resulting BDD: x1Bϕ ∨ Bψ

x2

0 1

BDDs summary

I |BDDBϕ⊗Bψ| = O(|BDDBϕ| × |BDDBψ|)
I Size of BDDs can be exponential w.r.t. the number of

variables
I Depends on the variable ordering
I f (x1, . . . , x2n) = x1x2 + · · ·+ x2n−1x2n

I 2n+1 nodes for x1 < x3 < . . . x2n−1 < x2 < x4 < · · · < x2n
I 2n + 2 nodes for x1 < x2 < x3 < · · · < x2n−1 < x2n

I Finding the best variable ordering is NP-hard
I Good heuristics exist

I Applications: circuit synthesis, formal verification, . . .

Quantified Boolean
formulas (QBFs)

QBF - Introduction

I Language: quantified propositional logic
I Quantifiers (∀,∃) over propositional variables are allowed in

the formula.
I Example: ∀x1∃x2(x1 ↔ x2)
I Synatic sugar:

I ∀xϕ(x)⇔ (ϕ(0) ∧ ϕ(1))
I ∃xϕ(x)⇔ (ϕ(0) ∨ ϕ(1))

I Potentially more succinct encodings than propositional logic

I Satisfiability of QBF is a (canonical) PSPACE-complete
problem

QBF - Introduction

I Language: quantified propositional logic
I Quantifiers (∀,∃) over propositional variables are allowed in

the formula.
I Example: ∀x1∃x2(x1 ↔ x2)
I Synatic sugar:

I ∀xϕ(x)⇔ (ϕ(0) ∧ ϕ(1))
I ∃xϕ(x)⇔ (ϕ(0) ∨ ϕ(1))

I Potentially more succinct encodings than propositional logic

I Satisfiability of QBF is a (canonical) PSPACE-complete
problem

QBF - Introduction

I Language: quantified propositional logic
I Quantifiers (∀,∃) over propositional variables are allowed in

the formula.
I Example: ∀x1∃x2(x1 ↔ x2)
I Synatic sugar:

I ∀xϕ(x)⇔ (ϕ(0) ∧ ϕ(1))
I ∃xϕ(x)⇔ (ϕ(0) ∨ ϕ(1))

I Potentially more succinct encodings than propositional logic

I Satisfiability of QBF is a (canonical) PSPACE-complete
problem

Prenex form

I Prenex CNF: ϕ = Q̂ψ where
I quantifier prefix Q̂ = Q1B1 . . .QnBn, Qi ∈ {∀,∃}, Qi 6= Qi+1,

Bi ⊆ Var(ψ), Bi ∩ Bj = ∅ for i 6= j .
I ψ is a propositional formula in CNF

I Linear ordering of variables: xi < xj iff xi ∈ Bi , xj ∈ Bj for
i < j .

I All (and only those) variables of ψ are quantified.
I Then φ is equivalent either to > or ⊥.

Semantics
Classical

I The QBF ⊥ is unsatisfiable, the QBF > is satisfiable.

I The QBF ¬ψ is satisfiable iff ψ is unsatisfiable.

I The QBF ψ1 ∧ ψ2 is satisfiable iff ψ1 and ψ2 are satisfiable.

I The QBF ψ1 ∨ ψ2 is satisfiable iff ψ1 or ψ2 is satisfiable.

I The QBF ∀xψ is satisfiable iff ψ[¬x] and ψ[x] are satisfiable.
The QBF ψ[¬x](ψ[x]) results from ψ by replacing x in ψ by ⊥(>).

I The QBF ∃xψ is satisfiable iff ψ[¬x] or ψ[x] is satisfiable.

Semantics
Games

I A game between two players: universal (P∀) and existential
(P∃).

I P∃ assigns existential variables and wants to satisfy the
formula.

I P∀ assigns universal variables and wants to falsify the formula.

I Players pick variables from left, according to quantifier
ordering.

I QBF is satisfiable (unsatisfiable) iff P∃ (P∀) has a winning
strategy.

I Winning strategy: P∃ (P∀) can satisfy (falsify) the formula
regardless of opponent’s choices.

DPLL algorithm for QBF

1: procedure QDPLL(PCNF ϕ, assignment α)
2: ψ ← simplify(ϕ[α])
3: if ψ == > then return TRUE

4: if ψ == ⊥ then return FALSE

5: if first quantifier is existential then
return QDPLL(ψ, α ∪ {¬x}) OR QDPLL(ψ, α ∪ {x})

6: if first quantifier is universal then
return QDPLL(ψ, α ∪ {¬x}) AND QDPLL(ψ, α ∪ {x})

Improving QDPLL

I Boolean Constraint Propagation for QBF

I Non-chronological backtracking

I Learning clauses (from conflicts)

I Learning cubes (from satisfying assignments)

Boolean Constraint Propagation for QBF

1. Universal reduction
I For a clause C ,

UR(C) = C \ {l ∈ C | q(l) = ∀ ∧ ∀l ′ ∈ C (q(l ′) = ∃ →
var(l ′) < var(l))}

2. Unit literal propagation
I Unit literal is assigned to TRUE
I If a clause C constains a single literal l and q(l) = ∃, l is a

unit literal.

3. Pure literal propagation
I Pure literal l is assigned to TRUE if q(l) = ∃ and to FALSE if

q(l) = ∀.

I Applied iteratively until nothing changes or the formula has
been solved.

QBF summary

I Generalization of SAT

I More compact encoding
I Younger field → research opportunities

I New techniques being explored

I QBF research community: http://www.qbflib.org

http://www.qbflib.org

	Binary Decision Diagrams (BDDs)
	Quantified Boolean formulas (QBFs)

