Decision Procedures and Verification

Martin Blicha

Charles University

9.4.2018

EQuALITY LOGIC AND
UNINTERPRETED FUNCTIONS

Equality logic

» Equality logic ~ Theory of equality
> As propositional logic where the atoms are equalities between
variables over some infinite type.
» Or between variables and constants

Definition
An equality logic formula is defined by the following grammar:
fla: flanfla| flav fla| —fla| atom

atom : term = term

term : identifier | constant

where identifiers are variables defined over single ininite domain
and constants are elements of the same domain as identiiers.

Complexity and expressiveness

Complexity of satisfiability
A satisfiability problem in equality logic is NP-complete.

» More natural modelling (high level structure preserved)

» More efficient (special decision procedures using the high level
structure)

Removal of constants
For an equality logic formula ©f, an equisatisfiable equality logic
formula ¢ without constants can be constructed in linear time.

» Replace constants with fresh variables.

» Add inequalities between these variables.

Adding functions

» Motivation: ability to model more than just the equality
without adding too much complexity.

Definition (Equality logic with uninterpreted functions)

Let Var be a set of variables and Fun be a set of function symbols
with arities. Equality logic formula with uninterpreted functions is

given by the following grammar:

fla: flanfla|flaV fla| —fla| atom
atom : term = term

term : var | f(term, ..., term)

where var € Var and f € Fun.

» Note: uninterpreted predicates are similar, but for simplicity
we do not consider them here

Functional consistency

» Theory of uninterpreted functions includes axioms for
functional consistency.

» Intuitively: "Instances of the same function return the same
value if given equal arguments.”

» For every function symbol f € Fun of arity n > 0 the following
axiom is included:

vxlw")xn)ylr"ayn
(xi=yiA-Axan=yn) = (F(x1,....xn) = (V1,1 ¥n))

Benefits of uninterpreted function

» Formula ¢ with interpreted functions can be simplified to a
formula pUYF where each interpreted function is replaced by an
uninterpreted one.

» Deciding validity of ©YF can be much simpler than deciding
validity of ¢.

Observation
Let T be a theory with equality. For every formula ¢ it holds that
if UF is T-valid, then ¢ is T-valid.

» Validity with uninterpreted functions implies validity under
any interpretation.

» The reverse implication does not hold.

Applications

» Verifying compiler optimization
» Proving equivalence of programs

» Optimizing circuits
» Proving equivalence of circuits

Application in program equivalence (1)

Original version Optimized version
int power3(int in) int power3_new(int in)
{ {
int i, out_a; int out_b;
out_a = in; out_b = (in * in) * in;
for (i = 0; i < 2; i++) return out_b;
{ }
out_a = out_a * in;

3

return out_a;

Are these implementations equivalent?

Application in program equivalence (2)

» Encoding as formulas:
> @, = out0, = in A outl, = out0, x in \ out2, = outl, x in
> p = outOp = (in * in) * in

» Check validity of ¢, A pp — out2, = out0p

Application in program equivalence (2)

v

Encoding as formulas:
> @, = out0, = in A outl, = out0, x in \ out2, = outl, x in
> p = outOp = (in * in) * in

v

Check validity of @, A pp — out2, = outQp
Replace multiplication by uninterpreted function G:
» ©YF .= out0, = in A outl, = G(out0,,in) A out2, =
G(outl,, in)
» pF := out0, = G(G(in, in), in)
Check validity of pYF A gng — out2, = out0p

v

v

Application in program equivalence (2)

v

Encoding as formulas:
> @, = out0, = in A outl, = out0, x in \ out2, = outl, x in
> p = outOp = (in * in) * in

v

Check validity of @, A pp — out2, = outQp
Replace multiplication by uninterpreted function G:
» ©YF .= out0, = in A outl, = G(out0,,in) A out2, =
G(outl,, in)
» pF := out0, = G(G(in, in), in)
Check validity of pYF A gng — out2, = out0p

v

v

v

If the formula is valid then the programs are equivalent.

Solving UF - Example

» oY =X =0 Axo = X3 A X4 = X5 A X5 # x1 A F(x1) # F(x3)

Solving UF - Example

» oY =X =0 Axo = X3 A X4 = X5 A X5 # x1 A F(x1) # F(x3)

» We can derive that x; = x3

Solving UF - Example

> (pUF =X =X AXo =Xx3/\Xg = X5\ X5 75X1/\F(X1) # F(X3)
» We can derive that x; = x3

» We can derive that F(x;) = F(x3)

Solving UF - Example

» oY =X =0 Axo = X3 A X4 = X5 A X5 # x1 A F(x1) # F(x3)

v

We can derive that x; = x3

v

We can derive that F(x;) = F(x3)

v

We note the contradiction with F(x;) # F(x3)

Solving UF - Example

» oY =X =0 Axo = X3 A X4 = X5 A X5 # x1 A F(x1) # F(x3)

v

We can derive that x; = x3

v

We can derive that F(x;) = F(x3)

v

We note the contradiction with F(x;) # F(x3)

The input formula is unsatisfiable!

Algorithm COGRUENCE CLOSURE

» Deciding conjunctive fragment of equality logic with
uninterpreted functions
» Here for single-argument functions

Algorithm CONGRUENCE CLOSURE
1. Build congruence-closed equivalence classes.

a) If (t1 = to) € UF then put all ; and t; to the same equivalence
class. All other terms form singleton equivalence classes

b) Given two equivalence classes with a shared term, merge them.
Repeat until there are no more classes to be merged.

c) Compute the congruence closure: given two terms t;,t; that are
in the same class and that F(t;) and F(t;) are terms in pYF for
some uninterpreted function F, merge the classes of F(t;) and
F(t;). Repeat until there are no more such instances.

2. If there exists a disequality t; # t; € ©YF such that t; and t

are in the same equivalence class, return UNSAT. Otherwise
return SAT.

Algorithm COGRUENCE CLOSURE - Notes

» Can be implemented efficiently with union-find data
structure

» Resulting in O(n log n) time complexity

» Can be used in DPLL(T) procedure yielding a full
decision procedure for UF

» Other approaches exists: reducing UF to equality logic
and eventually to propositional logic.

Reducing UF to equality logic

» Ackermann’'s reduction

> Bryant's reduction

Ackermann’s reduction

» A given ©UF with uninterpreted functions is reduced to
equality logic formula ©f such that it is valid iff pUF is valid.

» Axioms of functional consistency need to be modeled within
©F by auxiliary variables.

» ©F is of the form FCE = flatF where FCE represents
constraints for functional consistency and flatt is UF after
replacement of functions with variables.

Ackermann’s reduction

» Single uninterpreted function wiht single argument
» Input: An EUF formula @YF
» Output: An equality logic formula ¢F which is valid iff ¢YF is

Algorithm ACKERMANN’S REDUCTION

1. Assign indices to the uninterpreted-function instances from
subexpressions outwards. Let F; denote the i-th instance of F
and arg(F;) denote its single argument.

2. Let flatf := 7(¢©UYF), where 7 is a function that replaces each
occurence of uninterpreted function F; with new variable f;.

3. Let FCE denote the following conjunction of
functional-consistency con- straints:

FCE == \; \(7(arg(F))) = 7(arg(F}))) = f; = f;
4. Return ¢F := FCE = flatF.

Ackermann’s reduction - example

» Consider
eUF = (x1 # x2) V (F(x1) = F(x2)) V (F(x1) # F(x3))
» Number instances of F:

> F(Xl)fl
> F(Xg)fz
> F(Xg)f3

» Replace function instances and establish function consistency
» flatf = (x1 £ x) V(A =H)V (A #)
» FCE = (x; = x2) = (fi = H)A
(x1 =x3) = (h =HB)A
(e =x3) = (2 =)

Ackermann’s reduction - multiple functions and nesting

> Consider ¢V = (x = x0) = F(F(G(x1))) = F(F(G(x)))
> Number instances:
> G(x1)...g1
F(G(x1))... A
F(F(G(x1)))...f
G(XQ) 82
F(G(x))...f
F(F(G(x))) .. fa
» Replace function instances and establish function consistency
> flatf == (xy = %) = (h = f1)
> FCP=(a=x)=(a1=g) N (a=1f)=(fi="h)A
(=)= (i=Ff) A (a=£)=(h="10)A
(h=g)=(b=1f) A (A=8)=(L="1)A
(&2=1f)=(h="1)

vV vy vy VvYyy

Ackermann’s reduction - validity and satiafiability

> Validity
» Checking validity of pUf is reduced to checking validity of
oF == FCE = flatt
» Equivalently, unsatisfiability of =F := FCE A —flatF can be
checked.

» Satisfiability
» Checking satisfiability of ©UF is reduced to satisfiability of
oF 1= FCE A flatE

» Equivalently, non-validity of —¢YF

» Ackermann'’s reduction of —pY" yields FCE = —flatf (same
constraints for functional consistency).

» Checking non-validity of FCE = —flatf is the same as
checking satisfiability of FCE A flatE.

Reduction from equality logic to propositional logic

» Graph-based reduction to propositional logic:
» Propositional skeleton + transitivity constraints.
» Transitivity constraints ensure the transitivy of equality is
captured at the propositional level.

» Domain allocation
» Based on the small-model property that the equality logic has.

1. Determine a domain allocation

2. Encode each variable as an enumerated type over its finite
domain. Construct a propositional formula representing the
equality logic formula under this finite domain and use SAT to

check if this formula is satisfiable.

	Equality Logic and Uninterpreted Functions

