
Decision Procedures and Verification

Martin Blicha

Charles University

9.4.2018

Equality Logic and
Uninterpreted Functions

Equality logic

I Equality logic ≈ Theory of equality
I As propositional logic where the atoms are equalities between

variables over some infinite type.
I Or between variables and constants

Definition
An equality logic formula is defined by the following grammar:

fla : fla ∧ fla | fla ∨ fla | ¬fla | atom

atom : term = term

term : identifier | constant

where identifiers are variables defined over single ininite domain
and constants are elements of the same domain as identiiers.

Complexity and expressiveness

Complexity of satisfiability

A satisfiability problem in equality logic is NP-complete.

I More natural modelling (high level structure preserved)

I More efficient (special decision procedures using the high level
structure)

Removal of constants
For an equality logic formula ϕE , an equisatisfiable equality logic
formula ψE without constants can be constructed in linear time.

I Replace constants with fresh variables.

I Add inequalities between these variables.

Adding functions

I Motivation: ability to model more than just the equality
without adding too much complexity.

Definition (Equality logic with uninterpreted functions)

Let Var be a set of variables and Fun be a set of function symbols
with arities. Equality logic formula with uninterpreted functions is
given by the following grammar:

fla : fla ∧ fla | fla ∨ fla | ¬fla | atom

atom : term = term

term : var | f (term, . . . , term)

where var ∈ Var and f ∈ Fun.

I Note: uninterpreted predicates are similar, but for simplicity
we do not consider them here

Functional consistency

I Theory of uninterpreted functions includes axioms for
functional consistency.

I Intuitively: ”Instances of the same function return the same
value if given equal arguments.”

I For every function symbol f ∈ Fun of arity n > 0 the following
axiom is included:

∀x1, . . . , xn, y1, . . . , yn

(x1 = y1 ∧ · · · ∧ xn = yn)→ (f (x1, . . . , xn) = f (y1, . . . , yn))

Benefits of uninterpreted function

I Formula ϕ with interpreted functions can be simplified to a
formula ϕUF where each interpreted function is replaced by an
uninterpreted one.

I Deciding validity of ϕUF can be much simpler than deciding
validity of ϕ.

Observation
Let T be a theory with equality. For every formula ϕ it holds that
if ϕUF is T -valid, then ϕ is T -valid.

I Validity with uninterpreted functions implies validity under
any interpretation.

I The reverse implication does not hold.

Applications

I Verifying compiler optimization
I Proving equivalence of programs

I Optimizing circuits
I Proving equivalence of circuits

Application in program equivalence (1)

Original version

int power3(int in)

{

int i, out_a;

out_a = in;

for (i = 0; i < 2; i++)

{

out_a = out_a * in;

}

return out_a;

}

Optimized version

int power3_new(int in)

{

int out_b;

out_b = (in * in) * in;

return out_b;

}

Are these implementations equivalent?

Application in program equivalence (2)

I Encoding as formulas:
I ϕa := out0a = in ∧ out1a = out0a ∗ in ∧ out2a = out1a ∗ in
I ϕb := out0b = (in ∗ in) ∗ in

I Check validity of ϕa ∧ ϕb → out2a = out0b

I Replace multiplication by uninterpreted function G :
I ϕUF

a := out0a = in ∧ out1a = G (out0a, in) ∧ out2a =
G (out1a, in)

I ϕUF
b := out0b = G (G (in, in), in)

I Check validity of ϕUF
a ∧ ϕUF

b → out2a = out0b
I If the formula is valid then the programs are equivalent.

Application in program equivalence (2)

I Encoding as formulas:
I ϕa := out0a = in ∧ out1a = out0a ∗ in ∧ out2a = out1a ∗ in
I ϕb := out0b = (in ∗ in) ∗ in

I Check validity of ϕa ∧ ϕb → out2a = out0b
I Replace multiplication by uninterpreted function G :

I ϕUF
a := out0a = in ∧ out1a = G (out0a, in) ∧ out2a =

G (out1a, in)
I ϕUF

b := out0b = G (G (in, in), in)

I Check validity of ϕUF
a ∧ ϕUF

b → out2a = out0b

I If the formula is valid then the programs are equivalent.

Application in program equivalence (2)

I Encoding as formulas:
I ϕa := out0a = in ∧ out1a = out0a ∗ in ∧ out2a = out1a ∗ in
I ϕb := out0b = (in ∗ in) ∗ in

I Check validity of ϕa ∧ ϕb → out2a = out0b
I Replace multiplication by uninterpreted function G :

I ϕUF
a := out0a = in ∧ out1a = G (out0a, in) ∧ out2a =

G (out1a, in)
I ϕUF

b := out0b = G (G (in, in), in)

I Check validity of ϕUF
a ∧ ϕUF

b → out2a = out0b
I If the formula is valid then the programs are equivalent.

Solving UF - Example

I ϕUF := x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x3)

I We can derive that x1 = x3

I We can derive that F (x1) = F (x3)

I We note the contradiction with F (x1) 6= F (x3)

The input formula is unsatisfiable!

Solving UF - Example

I ϕUF := x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x3)

I We can derive that x1 = x3

I We can derive that F (x1) = F (x3)

I We note the contradiction with F (x1) 6= F (x3)

The input formula is unsatisfiable!

Solving UF - Example

I ϕUF := x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x3)

I We can derive that x1 = x3

I We can derive that F (x1) = F (x3)

I We note the contradiction with F (x1) 6= F (x3)

The input formula is unsatisfiable!

Solving UF - Example

I ϕUF := x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x3)

I We can derive that x1 = x3

I We can derive that F (x1) = F (x3)

I We note the contradiction with F (x1) 6= F (x3)

The input formula is unsatisfiable!

Solving UF - Example

I ϕUF := x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x3)

I We can derive that x1 = x3

I We can derive that F (x1) = F (x3)

I We note the contradiction with F (x1) 6= F (x3)

The input formula is unsatisfiable!

Algorithm Cogruence closure
I Deciding conjunctive fragment of equality logic with

uninterpreted functions
I Here for single-argument functions

Algorithm Congruence Closure

1. Build congruence-closed equivalence classes.

a) If (t1 = t2) ∈ ϕUF then put all t1 and t2 to the same equivalence
class. All other terms form singleton equivalence classes

b) Given two equivalence classes with a shared term, merge them.
Repeat until there are no more classes to be merged.

c) Compute the congruence closure: given two terms ti ,tj that are
in the same class and that F (ti) and F (tj) are terms in ϕUF for
some uninterpreted function F , merge the classes of F (ti) and
F (tj). Repeat until there are no more such instances.

2. If there exists a disequality ti 6= tj ∈ ϕUF such that ti and tj
are in the same equivalence class, return UNSAT. Otherwise
return SAT.

Algorithm Cogruence closure - Notes

I Can be implemented efficiently with union-find data
structure

I Resulting in O(n log n) time complexity

I Can be used in DPLL(T) procedure yielding a full
decision procedure for UF

I Other approaches exists: reducing UF to equality logic
and eventually to propositional logic.

Reducing UF to equality logic

I Ackermann’s reduction

I Bryant’s reduction

Ackermann’s reduction

I A given ϕUF with uninterpreted functions is reduced to
equality logic formula ϕE such that it is valid iff ϕUF is valid.

I Axioms of functional consistency need to be modeled within
ϕE by auxiliary variables.

I ϕE is of the form FCE ⇒ flatE where FCE represents
constraints for functional consistency and flatE is ϕUF after
replacement of functions with variables.

Ackermann’s reduction

I Single uninterpreted function wiht single argument

I Input: An EUF formula ϕUF

I Output: An equality logic formula ϕE which is valid iff ϕUF is.

Algorithm Ackermann’s reduction

1. Assign indices to the uninterpreted-function instances from
subexpressions outwards. Let Fi denote the i-th instance of F
and arg(Fi) denote its single argument.

2. Let flatE := τ(ϕUF), where τ is a function that replaces each
occurence of uninterpreted function Fi with new variable fi .

3. Let FCE denote the following conjunction of
functional-consistency con- straints:
FCE :=

∧
i

∧
j(τ(arg(Fi)) = τ(arg(Fj)))⇒ fi = fj

4. Return ϕE := FCE ⇒ flatE .

Ackermann’s reduction - example

I Consider
ϕUF := (x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

I Number instances of F :
I F (x1) . . . f1
I F (x2) . . . f2
I F (x3) . . . f3

I Replace function instances and establish function consistency
I flatE := (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3)
I FCE := (x1 = x2)⇒ (f1 = f2)∧

(x1 = x3)⇒ (f1 = f3)∧
(x2 = x3)⇒ (f2 = f3)

Ackermann’s reduction - multiple functions and nesting

I Consider ψUF := (x1 = x2)⇒ F (F (G (x1))) = F (F (G (x2)))
I Number instances:

I G (x1) . . . g1

I F (G (x1)) . . . f1
I F (F (G (x1))) . . . f2
I G (x2) . . . g2

I F (G (x2)) . . . f3
I F (F (G (x2))) . . . f4

I Replace function instances and establish function consistency
I flatE := (x1 = x2)⇒ (f2 = f4)
I FCE := (x1 = x2)⇒ (g1 = g2) ∧ (g1 = f1)⇒ (f1 = f2)∧

(g1 = g2)⇒ (f1 = f3) ∧ (g1 = f3)⇒ (f1 = f4)∧
(f1 = g2)⇒ (f2 = f3) ∧ (f1 = f3)⇒ (f2 = f4)∧
(g2 = f3)⇒ (f3 = f4)

Ackermann’s reduction - validity and satiafiability

I Validity
I Checking validity of ϕUF is reduced to checking validity of
ϕE := FCE ⇒ flatE

I Equivalently, unsatisfiability of ¬ϕE := FCE ∧ ¬flatE can be
checked.

I Satisfiability
I Checking satisfiability of ϕUF is reduced to satisfiability of
ϕE := FCE ∧ flatE

I Equivalently, non-validity of ¬ϕUF

I Ackermann’s reduction of ¬ϕUF yields FCE ⇒ ¬flatE (same
constraints for functional consistency).

I Checking non-validity of FCE ⇒ ¬flatE is the same as
checking satisfiability of FCE ∧ flatE .

Reduction from equality logic to propositional logic

I Graph-based reduction to propositional logic:
I Propositional skeleton + transitivity constraints.
I Transitivity constraints ensure the transitivy of equality is

captured at the propositional level.

I Domain allocation
I Based on the small-model property that the equality logic has.

1. Determine a domain allocation
2. Encode each variable as an enumerated type over its finite

domain. Construct a propositional formula representing the
equality logic formula under this finite domain and use SAT to
check if this formula is satisfiable.

	Equality Logic and Uninterpreted Functions

