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Theory of bit vector
arithmetics



Bit vector arithmetics

Definition
A quantifier-free formula in the language of the theory of bit vector
arithmetic is defined by the following grammar:

fla : fla ∧ fla | ¬fla | atom

atom : term rel term | Boolean − Identifier | term[constant]

rel : = | <
sum : term | sum + term

term : term op term | identifier | ∼term | constant |
atom?term : term | term[constant : constant] | ext(term)

op : + | − | · | / | � | � |& | | | ⊕ | ◦



Motivation (1)

I Consider a bit vector arithmetic formula ϕ:

(x − y > 0)⇔ (x > y)

I Valid over integers
I Not valid in structure with bit-vectors of fixed length

11001000 = 200

+01100100 = 100

=00101100 = 44

I The meaning of arithmetic operations is defined by means of
modular arithmetic.



Motivation (2)

I Efficient programming on bit-level
I Encoding literals in SAT solver

unsigned v a r i a b l e i n d e x
( i n t l i t ) {

i f ( l i t < 0)
return − l i t ;

return l i t ;
}

unsigned v a r i a b l e i n d e x
( unsigned l i t ) {

return l i t >> 1 ;
}

bool s i g n ( unsigned l i t )
{

return l i t & 1 ;
}



Notation

I Church’s λ-notation will be used to define bit-vectors
I λ-expression for a bit vector of length l :

I λi ∈ {0, 1, . . . , l − 1}.f (i), where f (i) is an expression
determining the value of the i-th bit

I Examples:
I λi ∈ {0, 1, . . . , l − 1}.0 is a bit vector of length l consisting of

all 0

I λi ∈ {0, 1, . . . , 7}.

{
0 if l is even

1 otherwise
is a bit vector 10101010

I λi ∈ {0, 1, . . . , l − 1}.¬bi is a bit vector of length l
corresponding to bit-wise negation of a bit vector b



Semantics of operators (1)

Definition
Bit vector b of length l is an assignment
b : {0, 1, . . . , l − 1} → {0, 1}. The i-th bit of bit vector b is
denoted as bi . The set of all the bit vectors of length l is denoted
as bvecl .

I The length of the bit-vectors has impact on the satisfiability
of a formulas.

I Signed and unsigned bit vectors are distinguished.
I semantics of arithmetic operations reflects the sign
I The type of an expression is a pair:

I the width in bits
I whether is it signed or unsigned



Semantics of operators (2)

I Bit-wise negation ∼:
I ∼[l ]: bvecl → bvecl , where ∼[l ] b = λi .¬bi

I Bit-wise and &:
I &[l ] : bvecl × bvecl → bvecl , where a&[l ]b = λi .ai ∧ bi

I Bit-wise or |:
I |[l ]: bvecl × bvecl → bvecl , where a |[l ] b = λi .ai ∨ bi

I Bit-wise xor ⊕:
I ⊕[l ] : bvecl × bvecl → bvecl , where a⊕[l ] b = λi .ai ⊕ bi

I Concatenation of bit-vectors ◦:
I ◦[l+k] : bvecl × bveck → bvecl+k , where

a ◦[l+k] b = λi .

{
ai : i < l

bi−l : otherwise



Semantics of operators (3)

I Encoding of natural numbers (unsigned):

Definition (binary encoding)

Let x be a natural number and b ∈ bvecl a bit vector. We say that
b is a binary encoding of x if and only if: x = <b>U , where

<>U : bvecl → {0, 1, . . . , 2l − 1} and <b>U =
l−1∑
i=0

bi2
i . Bit b0 is

the lowest bit, bit bl−1 is the highest bit.

I Encoding of natural integers (signed):

Definition (two’s complement)

Let x be an integer and b ∈ bvecl a bit vector. x = <b>S , where
<>S : bvecl → {−2l−1, . . . , 2l−1 − 1} and

<b>S = −2l−1bl−1 +
l−2∑
i=0

bi2
i . Bit bl − 1 is called the sign bit of b.



Semantics of operators (4)

I addition and subtraction
I a[l ] +U b[l ] = c[l ] ⇔ <a>U +<b>U = <c>U mod 2l

I a[l ] −U b[l ] = c[l ] ⇔ <a>U −<b>U = <c>U mod 2l

I a[l ] +S b[l ] = c[l ] ⇔ <a>S +<b>S = <c>S mod 2l

I a[l ] −S b[l ] = c[l ] ⇔ <a>S −<b>S = <c>S mod 2l

I operations can be defined over mixed types
I a[l ]U +U b[l ]S = c[l ]U ⇔ <a>U +<b>S = <c>U mod 2l

I unary minus
I −al = bl ⇔ −<a>S = <b>S mod 2l



Semantics of operators (5)

I multiplication and division
I a[l ] ∗U b[l ] = c[l ] ⇔ <a>U ∗<b>U = <c>U mod 2l

I a[l ]/Ub[l ] = c[l ] ⇔ <a>U/<b>U = <c>U mod 2l

I a[l ] ∗S b[l ] = c[l ] ⇔ <a>S ∗<b>S = <c>S mod 2l

I a[l ]/Sb[l ] = c[l ] ⇔ <a>S/<b>S = <c>S mod 2l

I relation operators
I a[l ]U < b[l ]U ⇔ <a>U < <b>U

I a[l ]S < b[l ]S ⇔ <a>S < <b>S

I a[l ]U < b[l ]S ⇔ <a>U < <b>S

I a[l ]S < b[l ]U ⇔ <a>S < <b>U



Semantics of operators (6)

I extension of a bit vector ext
I bit vector of length l is extended to length m for l ≤ m:

I zero extension: ext[m]U(a[l ]) = b[m]U ⇔ <a>U = <b>U

I sign extension: ext[m]S(a[l ]) = b[m]S ⇔ <a>S = <b>S

I shifting of a bit vector
I left shift - zero bits are filled from rigth

I a[l ] � bU = λi .

{
ai−<b> if i ≥ <b>U

0 : otherwise

I right shift - distinguished operations for signed and unsigned
case:

I a[l ]U � bU = λi .

{
ai+<b> if i < l −<b>U

0 : otherwise

I a[l ]S � bU = λi .

{
ai+<b> if i < l −<b>U

al−1 : otherwise



Bit-vector flattening

I For a given bit-vector formula ϕ and equisatisfiable
propositional ψ is constructed.

1: procedure BV-Flattening(ϕ)
2: B ← e(ϕ)
3: for each t[l ] ∈ T (ϕ) do
4: for i ∈ 0, 1, . . . , l − 1 do
5: set e(t)i to a new Boolean variable

6: for each a ∈ At(ϕ) do
7: B ← B∧ BV-Constraint(e, a)

8: for each t[l ] ∈ T (ϕ) do
9: B ← B∧ BV-Constraint(e, t)

I e is a propositional encoder, At(ϕ) and T (ϕ) a set of atoms
and terms of ϕ, respectively.



Bit vector constraints (1)

I If t is a bit vector or a is a propositional variable, no
constraint is needed.

I BV-Constraint(e, t) and BV-Constraint(e, a) return True.

I If t is a vector constant C[l ] then

I BV-Constraint(e, t) returns
l−1∧
i=0

(Ci ⇔ e(t)i )

I If t contains bit-wise operator then

I if t = ∼[l ]a BV-Constraint(e, t) returns
l−1∧
i=0

(¬ai ⇔ e(t)i )

I if t = a&[l ]b BV-Constraint(e, t) returns
l−1∧
i=0

(ai ∧ bi ⇔ e(t)i )

I if t = a |[l ] b BV-Constraint(e, t) returns
l−1∧
i=0

(ai ∨ bi ⇔ e(t)i )

I if t = a⊕[l ] b BV-Constraint(e, t) returns
l−1∧
i=0

(ai ⊕ bi ⇔ e(t)i )

I if t = a[l ] ◦[l+k] b[k] BV-Constraint(e, t) returns
l+k−1∧
i=0

{
(ai ⇔ e(t)i ) : if i < l

(bi ⇔ e(t)i ) : otherwise



Bit vector constraints (2)

I Constraints for arithmetic operations are based on
implementations of these operations in logic circuits

I Various implementations
I Simplest usually burden the SAT solver the least

I A full adder is defined using the two functions carry and sum.
Both of these functions take three input bits a, b, and cin as
arguments. The function carry calculates the carry-out bit of
the adder, and the function sum calculates the sum bit:

I carry(a, b, cin) = (a ∧ b) ∨ ((a⊕ b) ∧ cin)
I sum(a, b, cin) = (a⊕ b)⊕ cin

I Carry bits c0, c1, . . . , cl for l-bit vectors x and y with cin the
input carry bits are defined as

I ci =

{
cin if i = 0

carry(xi−1, yi−1, ci−1) otherwise



Bit vector constraints (3)
I l-bit adder: A funtion add that assigns two l-bit bit vectors x

and y and input carry bit cin an l-bit bit vector r
corresponding to their sum and a carry-out bit cout is called
l-bit added. The function add is defined as follows:

I add(x , y , cin) = (r , cout)
I ri = sum(xi , yi , ci ) for i = 0, . . . , l − 1
I cout = cl , where ci for i = 0, . . . , l are carry bits

I Constraint t = a +[l ] b can be encoded by l-bit adder where
the input carry bit is 0:

I BV-Constraint(e, t) returns
l−1∧
i=0

(add(a, b, 0).ri ⇔ e(t)i ).

I Because <a>U +<b>U = <e(t)>U mod 2l iff
l−1∧
i=0

(add(a, b, 0).ri ⇔ e(t)i ).

I Constraint t = a−[l ] b can be encoded in a similar way:

I BV-Constraint(e, t) returns
l−1∧
i=0

(add(a,∼b, 1).ri ⇔ e(t)i )

I Uses the fact that <(∼b + 1)>S = −<b>S mod 2l .



Bit vector constraints (4)

I Relation operator constraints
I For at =def (a =[l ] b) BV-Constraint(e, at) returns

(
l−1∧
i=0

(ai = bi ))⇔ e(at).

I a < b is transformed to a− b < 0 and adder is built for the
subtraction. The result depends on the encoding.

I Signed case: BV-Constraint(e, at) returns
¬add(a,∼b, 1).cout

I Unsigned case: BV-Constraint(e, at) returns
al−1 ⇔ bl−1 ⊕ add(a, b, 1).cout

I Bit-vector shifting constraints
I Assumptions: Shifted vector has l bits where l is a power of 2,

size of the shift uses n = log2l bits.
I Barrel shifter is used.

I Operates in n phases.
I Stage s can shift the operand by 2s bits or leave it unaltered.



Bit vector constraints (5)

I Barrel shifter constraints
I For t = a[l ] � b[n] a function lsh for s ∈ {−1, 0, . . . , n − 1} is

defined as follows:
I lsh(a, b,−1) = a

I lsh(a, b, s) = λi ∈ {0, . . . , l − 1}.


(lsh(a, b, s − 1))i−2s if i ≥ 2s ∧ bs

(lsh(a, b, s − 1))i if ¬bs
0 otherwise

I BV-Constraint(e, t) returns
l−1∧
i=0

((lsh(a, b, n)i ⇔ e(t)i ).

I Multiplication constraints
I For t = a ∗ b addition and shifts will be used, a function mul

for s ∈ {−1, 0, . . . , l − 1} is defined as follows:
I mul(a, b,−1) = 0
I mul(a, b, s) = mul(a, b, s − 1) + (bs?(a� s) : 0)

I BV-Constraint(e, t) returns
l−1∧
i=0

((mul(a, b, l)i ⇔ e(t)i ).



Bit vector constraints (6)

I Division constraints
I For t = a/[U]b following constraints will be used:

I b 6= 0⇒ e(t) · b + r = a
I b 6= 0⇒ r < b

I Both constraints are returned by BV-Constraint(e, t) and
r is a new bit vector the same width as b representing the
remainder

I Signed division and modulo operations are handled similarly.

I Conditional expression
I Let t = at?t1 : t2 be a conditional expression where at is an

atom and t1, t2 are terms.
I BV-Constraint(e, t) returns

(at ⇒
l−1∧
i=0

(e(t)i ⇔ e(t1)i )) ∧ (¬at ⇒
l−1∧
i=0

(e(t)i ⇔ e(t2)i ))



Problems

I Constraints generated can be very long and complicated
I Especially for 64-bits representation.
I Multiplication of two n-bit numbers:

I n=16 ⇒ 1265 variables and 4177 clauses.
I n=32 ⇒ 5089 variables and 17057 clauses.
I n=64 ⇒ 20417 variables and 68929 clauses.

I Heuristics in SAT solvers are biased towards variables
appearing frequently

I ϕ =def (a · b = c) ∧ (a · b 6= c) ∧ (x < y) ∧ (x > y)
I SAT solver can focus on first part, ignoring the second part,

which is much easier.



Incremental bit-flattening

I Idea: add constraints gradually
I Start with propositional skeleton, check satisfiability

I UNSAT ⇒ original formula is UNSAT
I SAT ⇒ add constraints that are violated by the satisfying

assignment.

I Repeat until UNSAT or no constraints are violated by
satisfying assignment.

I Incremental bit-flattening can be combined with uninterpreted
functions to preserve functional consistency without adding
constraints for particular operator



Incremental bit-flattening

1: procedure Incremental-BV-Flattening(ϕ)
2: B ← e(ϕ)
3: for each t[l ] ∈ T (ϕ) do
4: for i ∈ 0, 1, . . . , l − 1 do
5: set e(t)i to a new Boolean variable

6: while TRUE do
7: α←SAT-Solver(B)
8: if α = UNSAT then return UNSAT
9: Let I ⊆ T (ϕ) be the set of terms inconsistent with α

10: if I = ∅ then return SAT

11: Select F ⊆ I
12: for each t[l ] ∈ F do B ← B∧ BV-Constraint(e, t)
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