
Decision Procedures and Verification

Martin Blicha

Charles University

30.4.2018

Program analysis

Introduction

I Detection of software defects
I Traditionally → Testing (specific inputs)

I Software verification
I Goal: to decide whether the specification is satisfied for all

possible inputs
I Specification: No division-by-0, x < y for program variables x

and y , . . .

I Reachability problem
I Problem of checking whether a given program state occurs in

any execution of the program

I Undecidable in general
I Unbounded allocation of memory
I Partial solutions exist

Introduction

I Partial solutions
I Work for a subset of programs
I Testing - declares program incorrect if an input is found that

violates the specification.
I Core of the solution = reasoning engine with decision

procedure (SMT solver)

I dynamic program vs static decision procedure
I simultaneous assignment of all variables satisfying given

formula

I static single assignment (SSA) form
I Approximations:

I Underapproximation - considers a subset of possible paths
I Overapproximation - considers superset of possible paths

Terminology

I An execution path is a sequence of program instructions
executed during a run of a program.

I Can be partial.

I An execution trace is a sequence of states that are observed
along an execution path

I Many traces along a single path are possible, corresponding to
different inputs.

I Symbolic simulation - technique using symbolic representation
of traces

I automatic test generation, detection of dead code, verification
of properties

I Assertion is a program instruction that takes a condition as
argument, and if the condition evaluates to false, it reports an
error and aborts.

I Verifying an assertion means proving that for all inputs the
condition of the assertion evaluates to true.

Checking Feasibility of a Single Path

1 vo i d ReadBlocks (i n t data [] , i n t
c ook i e)

2 {
3 i n t i = 0 ;
4 wh i l e (t r u e)
5 {
6 i n t nex t ;
7 nex t = data [i] ;
8 i f (! (i < next && next < N)

) r e t u r n ;
9 i = i + 1 ;

10 f o r (; i < next ; i = i + 1)
11 {
12 i f (data [i] == cook i e)
13 i = i + 1 ;
14 e l s e
15 Proce s s (data [i]) ;
16 }
17 }
18 }

I Artificial, but useful
low-level example

I N denotes number of
elements in the array

I Specification: no access
out-of-bounds

I Consider single path
(generalization later)

1. Run through for loop
once, take the else
branch.

2. Exit the while loop in the
second iteration on
Line 8.

Checking Feasibility of a Single Path

I Consider the sequence of instructions corresponding to this
execution

I Record the branching conditions corresponding to the
branches taken

I Rewrite instructions and conditions into the static single
assignment representation

I timestamped versions of variables
I new version of a variable for each write (assignment)

I Translate SSA into logical formula ⇒ path constraint
I Replace assignments with equalities and conjunct everything

including branch conditions.

Checking Feasibility of a Single Path

Line Kind Instruction or condition

3 Assignment i = 0;

7 Assignment next = data[i];

8 Branch i < next && next < N

9 Assignment i = i + 1;

10 Branch i < next;

11 Branch data[i] != cookie;

14 Function call Process(data[i]);

10 Assignment i = i + 1

10 Branch !(i < next)

7 Assignment next = data[i];

8 Branch !(i < next && next < N)

Sequence of statements along a path

Checking Feasibility of a Single Path

Line Kind Instruction or condition

3 Assignment i1 = 0;

7 Assignment next1 = data0[i1];

8 Branch i1 < next1 && next1 < N0
9 Assignment i2 = i1 + 1;

10 Branch i2 < next1;

11 Branch data0[i2] != cookie0;

14 Function call Process(data0[i2]);

10 Assignment i3 = i2 + 1

10 Branch !(i3 < next1)

7 Assignment next2 = data0[i3];

8 Branch !(i3 < next2 && next2 < N0)

SSA form of the trace

Checking Feasibility of a Single Path

ssa⇐⇒i1 = 0 ∧
next1 = data0[i1] ∧
(i1 < next1 ∧ next1 < N0) ∧
i2 = i1 + 1 ∧
i2 < next1 ∧
data0[i2] 6= cookie0 ∧
i3 = i2 + 1 ∧
!(i3 < next1) ∧
next2 = data0[i3] ∧
!(i3 < next2 ∧ next2 < N0) ∧

I All evaluations of inputs data0 and cookie0 satisfying this
formula correspond to a trace for the chosen path

Assertion checking

1. Consider path leading the an assertion.

2. Take the path constraint of that path.

3. Add negation of the assertion to the path constraint.

I Satisfying assignment correspond to trace leading to assertion
with its condition violated.

I Problem of verifying corectness of a path in a program is
reduced to checking the satisfiability of a formula.

Checking Feasibility of All Paths in a Bounded Program

I Number of paths can grow exponentially in the number of
branches.

I Approach described previously would need to solve
exponential number of decision problems.

I Better approach ⇒ generate SSA for bounded program with
branches as a whole.

I SSA is converted to a formula that encodes all possible paths.

Checking Feasibility of All Paths in a Bounded Program
SSA for the whole program

1. Unfold loops pre-specified number of times.

2. Assign the condition of each if statement to a new variable.
I γ (for guard)

3. Identify points where control-flow reconverges.

4. Add φ-instructions setting the correct values of variables.
I For variables that has been changed in either branch.

5. Translate to formula as before.
I If-then-else operator to represent φ instructions

6. Satisfying assignment corresponds to one trace (of one path).
I Assignment of guard variables determines the branches taken.

I Example: for-loop from ReadBlocks unrolled 2 times

Checking Feasibility of All Paths in a Bounded Program
Example of SSA

1 if (i < next){

2 if (data[i] == cookie)

3 i = i + 1;

4 else

5 Process(data[i]);

6

7 i = i + 1;

8

9 if (i < next) {

10 if (data[i] == cookie)

11 i = i + 1;

12 else

13 Process(data[i]);

14

15 i = i + 1;

16 }

17 }

1 γ1 = (i0 < next0);

2 γ2 = (data0[i0] == cookie0);

3 i1 = i0 + 1;

4

5

6 i2 = γ2 ? i1 : i0; //φ
7 i3 = i2 + 1;

8

9 γ3 = (i3 < next0);

10 γ4 = (data0[i3] == cookie0);

11 i4 = i3 + 1;

12

13

14 i5 = γ4 ? i4 : i3; //φ
15 i6 = i5 + 1;

16 i7 = γ3 ? i6 : i3; //φ
17 i8 = γ1 ? i7 : i0; //φ

Under-approximation vs Over-approximation

I What we have seen:

I Transformation to loop-freep program by unrolling loops
I Under-approximation technique

I Considers a subset of possible paths.
I If it detects a bug, it is real.
I Can declare program safe only up to given bound.

I What we will see:

I Transformation to loop-free program using
non-determinism

I Over-approximation technique
I Considers a superset of possible paths.
I Detected bugs can be spurious
I If the over-approximation is safe, the original program is

safe.

Over-approximating transformation

1. For each loop and each program variable that is modified by
the loop, add an assignment at the beginning of the loop that
assigns a nondeterministic value to the variable.

2. After each loop, add an assumption that the negation of the
loop condition holds.

I An assumption is a program statement assume(c) that aborts
any path that does not satisfy c.

3. Replace each while loop with an if statement using the
condition of the loop as the condition of the if statement.

Over-approximating transformation
Example

Original program

1 int i = 0;

2 int j = 0;

3

4 while(data[i] != ’\n’)

5 {

6 i++;

7 j = i;

8 }

9 assert(i == j);

Transformed program

1 int i = 0;

2 int j = 0;

3

4 if(data[i] != ’\n’)

5 {

6 i = *;

7 j = *;

8 i++;

9 j = i;

10 }

11 assume(data[i] == ’\n’)

12

13 assert(i == j);

Checking over-approximating program

I Transformation to SSA/formula as before
I Nondeterministic assignment modelled by incrementing

variable counter.
I Assumption translated by conjoining its condition to the

formula.

I Formula is unsatisfiable.

I Program is safe for any number of iterations.
I Abstraction worked, because the assertion does not depend on

previous iterations of the loop.
I In other cases, the abstraction needs to be refined.

Loop invariant

I Key tool in any analysis of unbounded program.

Definition
A loop invariant is any predicate holds at the beginning of the
body irrespective of how many times the loop iterates.

1 int i = 0;

2 while(i != 10){

3 ...

4 i++;

5 }

⇒ 0 ≤ i < 10

I Induction is used to prove that a given formula is an invariant.

Proving loop invariant by induction

I Assume program in the following form where code fragments
A,B are loop-free and condition C and invariant I are without
side-effects.

I Prove that I is invariant by induction:

1. Base case: Prove I is satisfied when entering the loop for the
first time.

2. Step case: Prove that from a state satisfying I, by executing
the loop body once, we get to a state satisfying I.

Loop

1 A;

2 while(C){

3 assert(I);

4 B;

5 }

Base case

1 A;

2 assert(C => I);

Step case

1 assume(C & I);

2 B;

3 assert(C -> I);

Proving loop invariant by induction
Example

Loop
int i = 0;

while(i != 10){

++i;

}

Base case
int i = 0;

assert(i != 10 -> (i

>= 0 && i < 10));

Step case
assume(i != 10 && i

>= 0 && i < 10);

++i;

assert(i != 10 -> (i

>= 0 && i < 10));

I By checking the base case program and step case program
using techniques for loop-free programs, we verify that
0 ≤ i < 10 is an invariant of the loop.

Refining abstraction with loop invariants

I Recall over-approximating transformation.
I Assume that for each loop l we have found a loop invariant Il .

For each loop add the following steps to the transformation.
4. Add an assertion that Il holds before the nondeterministic

assignments to the loop variables.
I This establishes the base case.

5. Add an assumption that Il holds after the nondeterministic
assignments to the loop variables.

I This is the induction hypothesis.

6. Add an assertion that C ⇒ Il holds at the end of the loop
body.

I This proves the induction step.

Finding invariants

I The challenge is to find loop invariant that is strong enough
to prove the property.

I TRUE is always an invariant, but not very useful one.

I Finding loop invariants is an area of active research.

I Simple option: constructing candidates from predicates
appearing in the code, or combining program variables with
usual relational operators.

I Generalizing facts obtained from examining unrolling of the
loop.

I . . .

	Program analysis

