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Combination of theories



Introduction

I Decision procedures seen so far focus on specific theory.
I Often formulas generated from verification conditions mix

expressions from several theories.
I Most prominent example is linear arithmetic and uninterpreted

functions.

I Combination of decision procedures for involved theories to
obtain decision procedure for the combination.

I Nelson–Oppen combination method
I Nelson, Oppen, Simplification by cooperating decision

procedures, 1979

I Delayed Theory Combination
I Bozzano at al., Efficient Satisfiability Modulo Theories via

Delayed Theory Combination, 2005

I Model-based Theory Combination
I de Moura, Bjørner, Model-based Theory Combination, 2007



Combination formally

I A theory is defined over a signature Σ
I Set of non-logical symbols (predicate and function symbols).

I Theory T is a set of sentences.
I More commonly represented by a set of axioms.
I Theory is the set of sentences deriveable from the axioms.

Definition (theory combination)

Given two theories T1 and T2 with signatures Σ1 and Σ2,
respectively, the theory combination T1 ⊕ T2 is a Σ1 ∪ Σ2-theory
defined by the axiom set T1 ∪ T2.

I Theory combination problem is to decide whether ϕ, a
Σ1 ∪ Σ2 formula, is T1 ⊕ T2 valid.



Convex theory

Definition (convex theory)

A Σ-theory T is convex if for every conjunctive Σ-formula ϕ

(ϕ =⇒
n∨

i=1

xi = yi ) is T -valid for some finite n > 1 =⇒

(ϕ =⇒ xi = yi ) is T -valid for some i ∈ {1, . . . , n},
where xi , yi are some variables.

I Linear arithmetic over reals is convex.
I A conjunction of linear arithmetic predicates define either

empty set, singleton or infinite set of values.

I Linear arithmetic over integers is not convex.
I x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ (x3 = x1 ∨ x3 = x2)



Nelson–Oppen restrictions

I Nelson-Oppen combination procedure solves combination
problem for theories (under certain restrictions).

Definition (Nelson–Oppen restrictions)

In order for the Nelson–Oppen procedure to be applicable, the
theories T1,T2 should comply with the following restrictions:

1. T1,T2 are quantifier-free first-order theories with equality.

2. There is a decision procedure for each of the theories.

3. The signatures of the theories are disjoint.

4. The theories are interpreted over infinite domain.



Purification

I Satisfiability-preserving transformation after which each atom
is from a specific theory.

I Afterwards, all atoms are pure.

I For a give formula ϕ, purification generates an equisatisfiable
ϕ′ the following way.

1. Let ϕ′ := ϕ.
2. For each ”alien” subexpression in t in ϕ′.

2.1 Replace t with a new auxiliary variable at .
2.2 ϕ′ := ϕ′ ∧ at = t.

I Example: ϕ := x1 ≤ f (x1) =⇒ ϕ′ := x1 ≤ a ∧ a = f (x1)

I After purification, ϕ′ can be partitioned to conjunctions of
Ti -literals.



Nelson–Oppen procedures for convex theories

Algorithm Nelson–Oppen-Convex

1. Purification: Purify ϕ into F1, . . . ,Fk .

2. Apply the decision procedure for Ti to Fi . If there exists i
such that Fi is unsatisfiable in Ti return UNSAT.

3. Equality propagation: If there exist i , j such that Fi Ti -implies
an equality between variables of ϕ that is not Tj -implied by
Fj , add this equality to Fj and go to step 2.

4. Return SAT.

I Example (f (x1, 0) ≥ x3) ∧ (f (x2, 0) ≤ x3) ∧ (x1 ≥ x2) ∧ (x2 ≥
x1) ∧ (x3 − f (x1, 0) ≥ 1



Combining Nonconvex Theories

I Example where Nelson–Oppen-Convex fails:
I For linear arithmetic over integers and uninterpreted predicates.
I 1 ≤ x ∧ x ≤ 2 ∧ p(x) ∧ ¬p(1) ∧ ¬p(2).

I Remedy is to consider not only implied equalities, but also
disjunctions of equalities.

I There are finitely many of them (which are non-equivalent).

I Problem is split to as many parts as there are disjuncts and
the procedure is called recursively.

I In the example, the disjunction x = 1 ∨ x = 2 is implied.
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Nelson–Oppen Procedure For Nonconvex Theories

Algorithm Nelson–Oppen

1. Purification: Purify ϕ into F1, . . . ,Fk .

2. Apply the decision procedure for Ti to Fi . If there exists i
such that Fi is unsatisfiable in Ti return UNSAT.

3. Equality propagation: If there exist i , j such that Fi Ti -implies
an equality between variables of ϕ that is not Tj -implied by
Fj , add this equality to Fj and go to step 2.

4. Splitting: If there exists i such that
I Fi =⇒ (x1 = y1 ∨ · · · ∨ xk = yk) and
I ∀j ∈ {1, . . . , k}.Fi 6=⇒ xj = yj ,

then apply Nelson–Oppen recursively to
ϕ′ ∧ x1 = y1, . . . , ϕ

′ ∧ xk = yk . If any of these subproblems is
satisfiable, return SAT, otherwise return UNSAT.

5. Return SAT.



Deficiencies of Nelson–Oppen Procedure

I Let dp1, dp2 denote the decision procedures for T1,T2 and
no(T1,T2) denote the Nelson–Oppen procedure for T1 ⊕ T2.

I In DPLL(T) framework no works as a single decision
procedure.

I Additional requirements imposed on individual decision
procedures dp1 and dp2:

I Deduction of (disjunctions of) equalities.
I Mutual awareness and comunication interface (for exchanging

equalities).



Nelson–Oppen procedure in DPLL(T) framework



Delayed Theory Combination



Delayed Theory Combination

I Does not require direct combination of T1 and T2.
I dp1, dp2 communicate only with SAT solver (Boolean

enumerator of assignments)
I No deduction of equalities is needed.

I Consistency is assured by introduction of interface equalities
to the Boolean skeleton of input formula.

I Interface variable = variable that is common to both parts of
the purified formula.

I Both theory solvers get the same assignment for interface
equalities.

I This ensures that the partial models can be merged to single
model for the input formula.



Delayed Theory Combination - algorithm

1: procedure Delayed-Theory-Combination(ϕ)
2: ψ ← Purify(ϕ)
3: Ap ← fol2prop(Atoms(ψ) ∪ E (interface vars(ψ)))
4: ψp ← fol2prop(ψ)
5: while Bool-satisfiable(ψp) do
6: βp1 ∧ β

p
2 ∧ β

p
e = βp ← total assingment(Ap, ψp)

7: (ρ1, π1)← T1-satisfiable (prop2fol(βp1 ∧ β
p
e ))

8: (ρ2, π2)← T2-satisfiable (prop2fol(βp2 ∧ β
p
e ))

9: if ρ1 = SAT ∧ ρ2 = SAT then return SAT

10: if ρ1 = UNSAT then ψp ← ψp ∧ ¬fol2prop(π1)

11: if ρ2 = UNSAT then ψp ← ψp ∧ ¬fol2prop(π2)

12: return UNSAT



Delayed Theory Combination - notes

I Big improvement over Nelson–Oppen procedure
I No modifications for underlying decision procedures.
I Easily integrated into DPLL(T) framework.

I Disadvantage:
I All equalities between interface variables added beforehand.
I Possibly quadratic increase.

I Lazy implementations are possible
I In the original paper it was because of inability of MathSAT to

add new literals on-the-fly.



Model-based Theory Combination

I Goal: minimize the number of shared equalities.
I In practice, number of local inconsistencies is much bigger

than global (cross-theory) inconsistencies.

I Basic idea:
I Each theory maintains a model for its part.
I At certain points if two variables have the same value, a new

interface equality is added to Boolean level.
I At certain points try mutation of current model to reduce

equalities.

I Example: Simplex-based decision procedure for linear
arithmetic maintains assignment all the time.
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