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COMBINATION OF THEORIES



Introduction

» Decision procedures seen so far focus on specific theory.
» Often formulas generated from verification conditions mix
expressions from several theories.
» Most prominent example is linear arithmetic and uninterpreted
functions.
» Combination of decision procedures for involved theories to
obtain decision procedure for the combination.
» Nelson—-Oppen combination method
> Nelson, Oppen, Simplification by cooperating decision
procedures, 1979
» Delayed Theory Combination

> Bozzano at al., Efficient Satisfiability Modulo Theories via
Delayed Theory Combination, 2005

» Model-based Theory Combination
> de Moura, Bjgrner, Model-based Theory Combination, 2007



Combination formally

> A theory is defined over a signature X
» Set of non-logical symbols (predicate and function symbols).

» Theory T is a set of sentences.

» More commonly represented by a set of axioms.
» Theory is the set of sentences deriveable from the axioms.

Definition (theory combination)

Given two theories T1 and T, with signatures 7 and X5,
respectively, the theory combination 71 @ T is a X1 U X»-theory
defined by the axiom set T; U T».

» Theory combination problem is to decide whether ¢, a
Y1 U225 formula, is T1 @ T» valid.



Convex theory

Definition (convex theory)

A X-theory T is convex if for every conjunctive X-formula ¢

n
(¢ = \/ x;j = y;) is T-valid for some finite n >1 —
i=1
(¢ = x; =y;)is T-valid for some i € {1,...,n},
where Xx;, y; are some variables.

> Linear arithmetic over reals is convex.
» A conjunction of linear arithmetic predicates define either
empty set, singleton or infinite set of values.
» Linear arithmetic over integers is not convex.
> i =1Ax%=2AN1<x3Ax3<2 = (X3:X1\/X3:X2)



Nelson—Oppen restrictions

» Nelson-Oppen combination procedure solves combination
problem for theories (under certain restrictions).

Definition (Nelson—Oppen restrictions)

In order for the Nelson—Oppen procedure to be applicable, the
theories T1, T should comply with the following restrictions:

1. Ty, T are quantifier-free first-order theories with equality.
2. There is a decision procedure for each of the theories.
3. The signatures of the theories are disjoint.

4. The theories are interpreted over infinite domain.



Purification

» Satisfiability-preserving transformation after which each atom
is from a specific theory.
» Afterwards, all atoms are pure.
> For a give formula ¢, purification generates an equisatisfiable
¢ the following way.
1. Let ¢’ :== .
2. For each "alien” subexpression in t in ¢’
2.1 Replace t with a new auxiliary variable a;.
22 =’ Nay =t.
» Example: ¢ :=x1 < f(x1) = ¢ :=x1<aNa=f(x)
» After purification, ¢’ can be partitioned to conjunctions of
T;-literals.



Nelson—Oppen procedures for convex theories

Algorithm NELSON-OPPEN-CONVEX

1. Purification: Purify ¢ into Fq, ..., Fk.
2. Apply the decision procedure for T; to F;. If there exists i
such that F; is unsatisfiable in T; return UNSAT.

3. Equality propagation: If there exist /,j such that F; T;-implies
an equality between variables of ¢ that is not Tj-implied by
F;, add this equality to F; and go to step 2.

4. Return SAT.

> Example (f(x1,0) > x3) A (f(x2,0) < x3) A (1 =2 x2) A (x2 >
X1) VAN (X3 — f(Xl,O) >1



Combining Nonconvex Theories

> Example where NELSON—OPPEN-CONVEX fails:

» For linear arithmetic over integers and uninterpreted predicates.
» 1< xAx<2Ap(x)A-p(1)A-p(2).



Combining Nonconvex Theories

> Example where NELSON—OPPEN-CONVEX fails:

» For linear arithmetic over integers and uninterpreted predicates.
» 1< xAx<2Ap(x)A-p(1)A-p(2).

» Remedy is to consider not only implied equalities, but also
disjunctions of equalities.

» There are finitely many of them (which are non-equivalent).



Combining Nonconvex Theories

> Example where NELSON—OPPEN-CONVEX fails:

» For linear arithmetic over integers and uninterpreted predicates.
» 1< xAx<2Ap(x)A-p(1)A-p(2).

» Remedy is to consider not only implied equalities, but also
disjunctions of equalities.

» There are finitely many of them (which are non-equivalent).

» Problem is split to as many parts as there are disjuncts and
the procedure is called recursively.

> In the example, the disjunction x =1V x = 2 is implied.



Nelson—Oppen Procedure For Nonconvex Theories

Algorithm NELSON-OPPEN

1.
2.

Purification: Purify ¢ into Fq,..., F.

Apply the decision procedure for T; to F;. If there exists i
such that F; is unsatisfiable in T; return UNSAT.

Equality propagation: If there exist i, such that F; T;-implies
an equality between variables of ¢ that is not Tj-implied by
Fj, add this equality to F; and go to step 2.

. Splitting: If there exists i such that

» Fp = (xa=y1V- - Vxk = y) and

» Vjie{l,....k}.Fi =5 xi=y;
then apply NELSON—OPPEN recursively to
O Ax1=y1,...,0 Axx = yk. If any of these subproblems is
satisfiable, return SAT, otherwise return UNSAT.

Return SAT.




Deficiencies of Nelson—Oppen Procedure

» Let dp1, dp> denote the decision procedures for Ty, T» and
no( Ty, T2) denote the Nelson—-Oppen procedure for T; & T».

» In DPLL(T) framework no works as a single decision
procedure.

» Additional requirements imposed on individual decision
procedures dp; and dps:
» Deduction of (disjunctions of) equalities.
» Mutual awareness and comunication interface (for exchanging
equalities).



Nelson—Oppen procedure in DPLL(T) framework
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Delayed Theory Combination
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Delayed Theory Combination

» Does not require direct combination of 77 and T».
> dpi, dpa communicate only with SAT solver (Boolean
enumerator of assignments)
» No deduction of equalities is needed.
» Consistency is assured by introduction of interface equalities
to the Boolean skeleton of input formula.
» Interface variable = variable that is common to both parts of
the purified formula.
» Both theory solvers get the same assignment for interface
equalities.
» This ensures that the partial models can be merged to single
model for the input formula.



Delayed Theory Combination - algorithm

1. procedure DELAYED-THEORY-COMBINATION(¢p)

2 1 < PURIFY(p)

3 AP« fol2prop(Atoms (1) U E (interface_vars(1))))
4: WP < fol2prop(v))

5: while Bool-satisfiable(¢?) do

6 BY A BS A BE = BP + total_assingment(AP, )P)
7 (p1,m1)  Ty-satisfiable (prop2fol(8f A BE))

8 (p2,m2) « Ty-satisfiable (prop2fol(85 A BE))

9: if p1 = SAT A p» = SAT then return SAT

10: if p1 = UNSAT then P « )P A\ =fol2prop(m1)
11 if p» = UNSAT then ¢P + P A —fol2prop(m)
12: return UNSAT




Delayed Theory Combination - notes

» Big improvement over Nelson—Oppen procedure

» No modifications for underlying decision procedures.
» Easily integrated into DPLL(T) framework.

» Disadvantage:

> All equalities between interface variables added beforehand.
» Possibly quadratic increase.

> Lazy implementations are possible

> In the original paper it was because of inability of MathSAT to
add new literals on-the-fly.



Model-based Theory Combination

» Goal: minimize the number of shared equalities.

» In practice, number of local inconsistencies is much bigger
than global (cross-theory) inconsistencies.

» Basic idea:
» Each theory maintains a model for its part.
» At certain points if two variables have the same value, a new
interface equality is added to Boolean level.
» At certain points try mutation of current model to reduce
equalities.

» Example: Simplex-based decision procedure for linear
arithmetic maintains assignment all the time.
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