Decision Procedures and Verification

Martin Blicha

Charles University

14.5.2018

COMBINATION OF THEORIES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

- Decision procedures seen so far focus on specific theory.
- Often formulas generated from verification conditions mix expressions from several theories.
 - Most prominent example is linear arithmetic and uninterpreted functions.
- Combination of decision procedures for involved theories to obtain decision procedure for the combination.
 - Nelson–Oppen combination method
 - Nelson, Oppen, Simplification by cooperating decision procedures, 1979
 - Delayed Theory Combination
 - Bozzano at al., Efficient Satisfiability Modulo Theories via Delayed Theory Combination, 2005
 - Model-based Theory Combination
 - de Moura, Bjørner, Model-based Theory Combination, 2007

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Combination formally

- A theory is defined over a signature Σ
 - Set of non-logical symbols (predicate and function symbols).
- Theory T is a set of sentences.
 - More commonly represented by a set of axioms.
 - Theory is the set of sentences deriveable from the axioms.

Definition (theory combination)

Given two theories T_1 and T_2 with signatures Σ_1 and Σ_2 , respectively, the theory combination $T_1 \oplus T_2$ is a $\Sigma_1 \cup \Sigma_2$ -theory defined by the axiom set $T_1 \cup T_2$.

• Theory combination problem is to decide whether φ , a $\Sigma_1 \cup \Sigma_2$ formula, is $T_1 \oplus T_2$ valid.

Convex theory

Definition (convex theory)

A Σ -theory T is *convex* if for every conjunctive Σ -formula φ ($\varphi \implies \bigvee_{i=1}^{n} x_i = y_i$) is T-valid for some finite $n > 1 \implies$

 $(\varphi \implies x_i = y_i)$ is *T*-valid for some $i \in \{1, ..., n\}$, where x_i, y_i are some variables.

- Linear arithmetic over reals is convex.
 - A conjunction of linear arithmetic predicates define either empty set, singleton or infinite set of values.
- Linear arithmetic over integers is not convex.

$$\bullet \quad x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \implies (x_3 = x_1 \lor x_3 = x_2)$$

(日) (同) (三) (三) (三) (○) (○)

Nelson-Oppen restrictions

 Nelson-Oppen combination procedure solves combination problem for theories (under certain restrictions).

Definition (Nelson-Oppen restrictions)

In order for the Nelson–Oppen procedure to be applicable, the theories T_1 , T_2 should comply with the following restrictions:

1. T_1, T_2 are quantifier-free first-order theories with equality.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. There is a decision procedure for each of the theories.
- 3. The signatures of the theories are disjoint.
- 4. The theories are interpreted over infinite domain.

Purification

- Satisfiability-preserving transformation after which each atom is from a specific theory.
 - Afterwards, all atoms are *pure*.
- For a give formula φ, purification generates an equisatisfiable φ' the following way.
 - 1. Let $\varphi' := \varphi$.
 - 2. For each "alien" subexpression in t in φ' .

2.1 Replace t with a new auxiliary variable a_t . 2.2 $\varphi' := \varphi' \wedge a_t = t$.

- Example: $\varphi := x_1 \leq f(x_1) \implies \varphi' := x_1 \leq a \land a = f(x_1)$
- After purification, φ' can be partitioned to conjunctions of T_i-literals.

Nelson–Oppen procedures for convex theories

Algorithm Nelson-Oppen-Convex

- 1. Purification: Purify φ into F_1, \ldots, F_k .
- 2. Apply the decision procedure for T_i to F_i . If there exists *i* such that F_i is unsatisfiable in T_i return UNSAT.
- 3. Equality propagation: If there exist i, j such that F_i T_i -implies an equality between variables of φ that is not T_j -implied by F_j , add this equality to F_j and go to step 2.
- 4. Return SAT.

• Example
$$(f(x_1, 0) \ge x_3) \land (f(x_2, 0) \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - f(x_1, 0) \ge 1$$

Combining Nonconvex Theories

- ► Example where NELSON-OPPEN-CONVEX fails:
 - ▶ For linear arithmetic over integers and uninterpreted predicates.

• $1 \le x \land x \le 2 \land p(x) \land \neg p(1) \land \neg p(2).$

Combining Nonconvex Theories

- ► Example where NELSON-OPPEN-CONVEX fails:
 - ▶ For linear arithmetic over integers and uninterpreted predicates.
 - $1 \leq x \wedge x \leq 2 \wedge p(x) \wedge \neg p(1) \wedge \neg p(2).$
- Remedy is to consider not only implied equalities, but also disjunctions of equalities.
 - There are finitely many of them (which are non-equivalent).

Combining Nonconvex Theories

- ► Example where NELSON-OPPEN-CONVEX fails:
 - For linear arithmetic over integers and uninterpreted predicates.
 - $1 \leq x \wedge x \leq 2 \wedge p(x) \wedge \neg p(1) \wedge \neg p(2).$
- Remedy is to consider not only implied equalities, but also disjunctions of equalities.
 - There are finitely many of them (which are non-equivalent).
- Problem is split to as many parts as there are disjuncts and the procedure is called recursively.
 - In the example, the disjunction $x = 1 \lor x = 2$ is implied.

Nelson-Oppen Procedure For Nonconvex Theories

Algorithm NELSON-OPPEN

- 1. Purification: Purify φ into F_1, \ldots, F_k .
- 2. Apply the decision procedure for T_i to F_i . If there exists *i* such that F_i is unsatisfiable in T_i return UNSAT.
- 3. Equality propagation: If there exist i, j such that F_i T_i -implies an equality between variables of φ that is not T_j -implied by F_j , add this equality to F_j and go to step 2.
- 4. Splitting: If there exists *i* such that

$$F_i \implies (x_1 = y_1 \lor \cdots \lor x_k = y_k) \text{ and}$$

$$\forall i \in \{1 \quad k\} F_i \implies x_i = y_i$$

$$\forall j \in \{1, \ldots, k\}. F_i \implies x_j = y_j,$$

then apply NELSON-OPPEN recursively to $(a' \land x) = (a' \land x) = (a' \land x)$

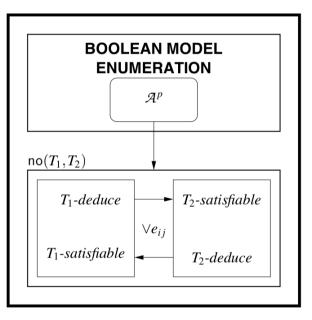
 $\varphi' \wedge x_1 = y_1, \dots, \varphi' \wedge x_k = y_k$. If any of these subproblems is satisfiable, return SAT, otherwise return UNSAT.

5. Return SAT.

Deficiencies of Nelson-Oppen Procedure

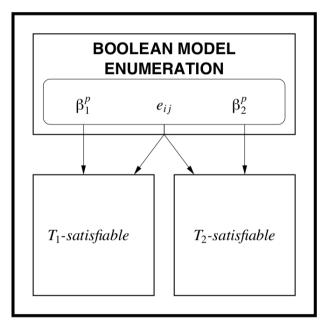
- Let dp₁, dp₂ denote the decision procedures for T₁, T₂ and no(T₁, T₂) denote the Nelson–Oppen procedure for T₁ ⊕ T₂.
- In DPLL(T) framework *no* works as a single decision procedure.
- Additional requirements imposed on individual decision procedures dp₁ and dp₂:
 - Deduction of (disjunctions of) equalities.
 - Mutual awareness and comunication interface (for exchanging equalities).

Nelson–Oppen procedure in DPLL(T) framework



୬ ସ ୧୦

Delayed Theory Combination



> E のへの

Delayed Theory Combination

- Does *not* require direct combination of T_1 and T_2 .
- dp₁, dp₂ communicate only with SAT solver (Boolean enumerator of assignments)
 - No deduction of equalities is needed.
- Consistency is assured by introduction of *interface equalities* to the Boolean skeleton of input formula.
 - Interface variable = variable that is common to both parts of the purified formula.
- Both theory solvers get the same assignment for interface equalities.
- This ensures that the partial models can be merged to single model for the input formula.

Delayed Theory Combination - algorithm

1: procedure Delayed-Theory-Combination(φ) $\psi \leftarrow \text{PURIFY}(\varphi)$ 2: $\mathcal{A}^{p} \leftarrow fol2prop(Atoms(\psi) \cup E(interface_vars(\psi)))$ 3: $\psi^{p} \leftarrow fol2prop(\psi)$ 4: 5: while Bool-satisfiable(ψ^p) do $\beta_1^p \wedge \beta_2^p \wedge \beta_e^p = \beta^p \leftarrow total_assingment(\mathcal{A}^p, \psi^p)$ 6: $(\rho_1, \pi_1) \leftarrow T_1$ -satisfiable (prop2fol $(\beta_1^p \land \beta_e^p)$) 7: $(\rho_2, \pi_2) \leftarrow T_2$ -satisfiable (prop2fol $(\beta_2^p \land \beta_e^p)$) 8: if $\rho_1 = SAT \land \rho_2 = SAT$ then return SAT 9. if $\rho_1 = UNSAT$ then $\psi^p \leftarrow \psi^p \land \neg fol_{2prop}(\pi_1)$ 10: if $\rho_2 = UNSAT$ then $\psi^p \leftarrow \psi^p \land \neg fol2prop(\pi_2)$ 11: return UNSAT 12:

Delayed Theory Combination - notes

Big improvement over Nelson–Oppen procedure

- No modifications for underlying decision procedures.
- Easily integrated into DPLL(T) framework.
- Disadvantage:
 - All equalities between interface variables added beforehand.
 - Possibly quadratic increase.
- Lazy implementations are possible
 - In the original paper it was because of inability of MathSAT to add new literals on-the-fly.

Model-based Theory Combination

► Goal: minimize the number of shared equalities.

- In practice, number of local inconsistencies is much bigger than global (cross-theory) inconsistencies.
- Basic idea:
 - Each theory maintains a model for its part.
 - At certain points if two variables have the same value, a new interface equality is added to Boolean level.

- At certain points try mutation of current model to reduce equalities.
- Example: Simplex-based decision procedure for linear arithmetic maintains assignment all the time.