
Decision Procedures and Verification

Seminar 3

- 1. (1 point) Simulate GSAT on the following CNF formula given as a list of clauses:
 - $(x_5 \vee \neg x_1 \vee x_3)$ $(\neg x_3 \lor x_4)$ $(\neg x_5 \lor x_1)$ $(x_6 \lor x_1)$ $(\neg x_1 \lor x_2)$ $(\neg x_3 \lor \neg x_4)$ $(\neg x_5 \lor \neg x_6)$ $(x_3 \vee \neg x_4)$ $(x_3 \lor x_5)$ $(x_2 \lor x_4 \lor \neg x_5)$ $(x_4 \vee \neg x_5 \vee \neg x_6)$ $(x_6 \vee \neg x_1)$ $(x_3 \vee \neg x_5)$ $(x_5 \lor x_1)$ $(\neg x_6 \lor \neg x_3 \lor x_2)$ $(x_1 \lor \neg x_2 \lor \neg x_4)$ $(\neg x_2 \lor \neg x_4 \lor x_6)$
- 2. (0.5 points) Solve the previous formula without any decisions. Use only preprocessing techniques and unit propagation.
- 3. (1 point) (blocked clauses) Let φ be a CNF formula, let $c \in \varphi$ be a clause such that $l \in c$ where l is a literal, and let $\varphi_{\neg l} \subseteq \varphi$ be the subset of φ 's clauses that contain $\neg l$. We say that c is *blocked* by l if the resolution of c with any clause in $\varphi_{\neg l}$ using var(l) as the pivot is a tautology. For example, if $c = l \lor x \lor y$ and $\varphi_{\neg l}$ has a single clause $c' = (\neg l \lor \neg x \lor z)$, then resolving c and c' on l results in $x \lor \neg x \lor y \lor z$, which is a tautology, and hence c is blocked by l. Prove that φ is equisatisfiable to $\varphi \setminus c$, i.e., blocked clauses can be removed from φ without affecting its satisfiability.
- 4. (0.5 points) Construct a factor graph for a CNF formula $\varphi = (x_1 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_4) \land (\neg x_3 \lor x_5) \land (\neg x_3 \lor \neg x_4 \lor x_5) \land (\neg x_2 \lor x_4 \lor x_6) \land (x_5)$
- 5. (1 point) Consider a factor graph from the following image where edges are labeled with warnings. x_1, \ldots, x_8 are variables and c_1, \ldots, c_9 are clauses. Dotted edges denote negative occurrences variables in clauses while solid edges represent positive occurrences. Simulate warning propagation.

