Journal article

AI Assistants: A Framework for Semi-Automated Data Wrangling
T. Petříček, G. Burg, A. Nazábal, T. Ceritli, E. Jiménez-Ruiz, C. Williams
IEEE Transactions on Knowledge and Data Engineering 35 (9)

Data wrangling tasks such as obtaining and linking data from various sources, transforming data formats, and correcting erroneous records, can constitute up to 80% of typical data engineering work. Despite the rise of machine learning and artificial intelligence, data wrangling remains a tedious and manual task. We introduce AI assistants, a class of semi-automatic interactive tools to streamline data wrangling. An AI assistant guides the analyst through a specific data wrangling task by recommending a suitable data transformation that respects the constraints obtained through interaction with the analyst. We formally define the structure of AI assistants and describe how existing tools that treat data cleaning as an optimization problem fit the definition. We implement AI assistants for four common data wrangling tasks and make AI assistants easily accessible to data analysts in an open-source notebook environment for data science, by leveraging the common structure they follow. We evaluate our AI assistants both quantitatively and qualitatively through three example scenarios. We show that the unified and interactive design makes it easy to perform tasks that would be difficult to do manually or with a fully automatic tool.

    title = {{AI Assistants: A Framework for Semi-Automated Data Wrangling}},
    author = {Petricek, Tomas and Burg, Gerrit J. J. van den and Nazábal, Alfredo and Ceritli, Taha and Jiménez-Ruiz, Ernesto and Williams, Christopher K. I.},
    year = {2023},
    journal = {{IEEE Transactions on Knowledge and Data Engineering}},
    number = {9},
    doi = {10.1109/TKDE.2022.3222538},
    issn = {1558-2191},
    pages = {9295--9306},
    url = {},
    volume = {35},
    shorttitle = {AI Assistants},