Semester: summer 2020/21
Lectures: Thursday, 9:00, Zoom (S5 in case of classroom teaching) (Lubomír Bulej)
  Wednesday, 17:20, Zoom (SU2 in case of classroom teaching) (Lubomír Bulej)
  Thursday, 15:40, Zoom (SU2 in case of classroom teaching) (Lubomír Bulej)
Page in SIS: NPRG043
Grading: Graded credit
Mailing list:

Distance Teaching Information

  • Lectures and take place online using the Zoom conference system.
  • Passwords required to join the Zoom meetings will be sent to the course mailing list.
  • Labs will be primarily used for student presentations and assignment agenda, and will follow the schedule below.
  • Students are advised to review the material on the resources page.


Programming is not just a matter of writing a program that runs (correctly), or implementing a particular algorithm. Modern programming has become a task in managing structural complexity of computer systems. For small-scale programs, which often serve as a wrapper (handling inputs and outputs) for some algorithm, the (structural) complexity is dominated by the abstractions, operations, and data structures required to implement the algorithm. In medium-sized programs and large-scale software systems, the complexity due to algorithm and the associated data structures stops dominating as the program becomes complex as a result of the number of concepts and their interactions. For such programs, design plays a critical role as the ability to develop and maintain such programs surpasses the capacity of a single person.

In such projects, the ability of team members to communicate effectively becomes extremely important, and the source code of a software system becomes one of the communication channels, which also happens to exactly reflect the current state of the system. While source code quality is (usually) not directly related to correct function of a software system, it does have a significant impact on other important aspects, such as readability, maintainability, and together with design also extensibility and reusability.

The source code quality manifests in many ways, from source code formatting, ordering of statements, choice of variable and function names, decomposition into methods, the content of comments, to design of classes and interfaces. At the lowest level, the goal is to find how to clearly and conveniently capture the executed operations, while at the highest level, the goal is to identify and use good abstractions, which simplify writing and orientation in code, and thus make a program easier to maintain and extend.

Through lectures and lab work during the semester, the course aims to introduce the students to (best) programming practices that lead to better code and program design. The goal is to motivate the students to adopt and use these techniques in practice.

Topics covered

  • Software construction and design, managing essential and accidental complexity.
  • API design, general principles, impact on class and method design.
  • Class design, abstraction & encapsulation, inheritance & composition, polymorphism, immutability.
  • SOLID design principles, design patterns in the context of design principles.
  • Method design, cohesion, naming, parameter passing, returning values, using exceptions, defensive programming.
  • Basic building blocks, variables and constants, general guidelines, naming convetions, fundamental data types.
  • Control structures and primitives, general guidelines, conditional statements, loop statements, code organization.
  • Code formatting, general principles, formatting blocks of code and code elements, formatting aids.
  • Documentation, internal documentation and comments, self-explanatory code.

Contact and office hours

The course has a mailing list which serves as the primary means of communication between the students and the lecturers. Please use the mailing list for any questions or suggestions related to the course, because it will (most probably) be of interest to other students as well.

If there is something that you do not want to discuss in the mailing list, do not hesitate to contact either of us directly or via email:

When sending us an email, please do try to make sure that what you are asking is not already answered elsewhere – either in the mailing list or on the course web page.

E-mail is preferred for brief inquiries and it is generally OK to come to my office without an appointment. However, a consultation is not a private lecture, therefore if you need to discuss a topic at length, it is better to arrange an appointment with a clear goal. This is especially important if you have trouble understanding something, because the first step is to find out what is it that you still understand and what is the next bit which is unclear.

I am out of office while the corona virus measures are in place, but we can meet remotely using Zoom. Please contact me to arrange an appointment that does not collide with my teaching.


The focus of the work during the semester lies in a set of assignments which students are expected to work on outside of class. To compensate, the number of labs is reduced and the labs follow an irregular schedule. The following calendar shows the lab schedule and the deadlines for assignment turn-ins:

Alternative links: HTML, iCal

Assignments and grading

The core of the work in the course comes from multiple assignments. Some of them are intended for pairs of students (to facilitate discussion about design and to try working with someone else), while others have to be submitted individually. The final grade is mostly determined by the assignments and the course can be passed with flying colors solely on the basis of excellent work during the semester.

The maximum amount of points that can be awarded is 100. The mapping between points and the final grade is shown in the following table:

Grade Points
1 ≥ 87 pts
2 ≥ 73 pts
3 ≥ 60 pts