Lectures: Wednesday, 10:40, S10 (Jan Kofroň)
Labs: Thursday, 9:00, S7 (Jan Kofroň)
Page in SIS: NSWI101
Grading: Credit and exam
Previous year: 2022/23
News
- There is NO lecture on January 3, 2024!
- There is NO lab neither on December 14 nor on December 21!
- There is NO lab on Thursday, November 30!
- The second homework assignment is available here. The submission deadline is February 23, 2024, the same as for the the first one.
- The first homework assignment is available in the lab 4 slides. The submission deadline is February 23, 2024.
- There is no lab on November 2 – the dean’s day.
- There is no lab on October 5! The first lab takes place on October 12.
Lectures
Date | Title | Downloads |
---|---|---|
04. 10. 2023 | Introduction, LTS, Process Algebras | Slides |
11. 10. 2023 | Model Checking | Slides |
18. 10. 2023 | Spin Model Checker | Slides |
25. 10. 2023 | Computational Tree Logic | Slides |
01. 11. 2023 | OBDD, Lattices, Fixpoints | Slides |
08. 11. 2023 | Symbolic CTL Model Checking | Slides |
15. 11. 2023 | Timed Automata | Slides |
22. 11. 2023 | Bounded Model Checking, Infinite-State Model Checking, Compositional Reasoning | Slides |
29. 11. 2023 | Abstractions and Symmetries | Slides |
6. 12. 2023 | Stochastic Model Checking | Slides |
13. 12. 2023 | Unbounded Model Checking | Slides |
20. 12. 2023 | Counter-Example Guided Abstraction Refinement | Slides |
Labs
Date | Title | Downloads |
---|---|---|
12. 10. 2023 | LTS, Process algebra | Slides |
19. 10. 2023 | Spin Exercises | ABP models |
26. 10. 2023 | Spin Exercises | Models, Slides |
09. 11. 2023 | More Spin Exercises | Dekker's algorithm, Slides |
16. 11. 2023 | UPPAAL and CTL Exercises | Slides, Producer-consumer example |
23. 11. 2023 | NuXMV and OBDD Exercises | Slides, Models |
07. 12. 2023 | NuXMV Exercises | Models |
Annotation
Basic concepts of behavior description of parallel and distributed systems. Equivalence checking and model checking—techniques and tools.
Syllabus
- Practical examples of behavior modeling and verification
- The SPIN model checker (developed at Bell Labs) which is being successfully used from 1989 for analysis of communication and cryptographic protocols, distributed algorithms and parts of OS kernels (e.g. process schedulers)
- The NuXMV (SMV) — Symbolic model checker based on Ordered Binary Decision Diagrams
- UPPAAL model checker
- Mathematical structures for behavior modeling: labeled transition systems, Kripke structures
- Timed automata
- Specification of system properties using temporal logic
- Basic verification tasks: equivalence checking and model checking
- Decidability and complexity (of equivalence checking and model checking) in dependence of the type of the model
- Software tools for equivalence checking and model checking
- Bounded model checking, probabilistic model checking
- Open issues in formal verification: infinite-state systems, state explosion problem
Lab
The purpose of the lab is to provide students with a hand-on experience with verification tools (SPIN, SMV, UPPAAL), higher-level behavior specification languages (process algebra, behavior protocols), and temporal logics (LTL, CTL).
There will be two assignments (one taking approximately 8 hours of homework, the other an hour). The homeworks are to be submitted via e-mail: nswi101@d3s.mff.cuni.cz
Note: 10% of your score will be deduced for every calendar day your assignment is late. This implies that no assignment will be accepted after 10 calendar days past its due date.
Grading
Final grades will be determined by the quality of homework and the result of the final exam in the following ratio:
- 55% Assignments (homework)
- 45% Final exam
References
- P. Regan, S. Hamilton: NASA’s Mission Reliable, IEEE Computer, vol. 37, no. 1, Jan 2004
- G. J. Holzmann: The Spin Model Checker, Addison Wesley, 2003
- E. M. Clarke, Jr., O. Grumberg, D. A. Peled: Model Checking, MIT Press, 2002
- J. A. Bergstra, A. Ponse, S. A. Smolka: Handbook of Process Algebra, Elsevier 2001
- R. Milner: Communication and Concurrency, Prentice Hall 1989
- C. Stirling: Modal and Temporal Properties of Processes, Springer 2001